
APPROACHES FOR REAL-TIME
ETHERNET

eingereicht von:

Rainer Poisel

DIPLOMARBEIT
zur Erlangung des akademischen Grades

Diplom Ingenieur (FH)
(Dipl. Ing. (FH))

Fachhochschule St. Pölten

Studienrichtung: Telekommunikation und Medien

Begutachter:
FH-Prof. Dipl. Ing. Johann Haag
ZT Dipl. Ing. Günter Zeiler St. Pölten, im Juni 2007

Declaration

I hereby declare that this submission is my own work and that, to the best of my knowl-
edge and belief, it contains no material previously published or written by another per-
son nor material, which, to a substantial extent, has been accepted for the award of any
other degree or diploma of the university or other institute of higher learning, except
where due acknowledgement has been made in the text.

St. Pölten, June 15, 2007 Rainer Poisel

Abstract

English

Fieldbus systems are used in automation industry to connect complex devices such as
machine tool controls [WB05, cmp. p. 272]. One basic element of these facilities is
the shared media of communication participants. With this shared media it is possible
to save communication lines when compared to parallel cabling.

Fieldbus systems are developed with a focus on real-time capabilities [Kut02, cmp.
p. 20]. Ethernet, when seen as an additional and as a replacement communication
technology, is faced with the same requirements on predictable timing behavior for
data transmission. Standard ethernet is not real-time capable because of equal rights
for communication participants when accessing the media [JJ01, cmp.]. Therefore
different approaches and extensions have been developed and standardized.

This documents determines requirements for real-time data transmission on ethernet
networks and contrasts available implementations. An experiment tests the real-time
behavior of two different approaches for real-time ethernet networks.

Deutsch

Mit Feldbussystemen werden in der Automatisierungsbranche Einrichtungen wie z.B.
Werkzeugmaschinensteuerungen vernetzt [WB05, vgl. S. 272]. Wesentliches Element
dieser Einrichtungen ist ein den Kommunikationsteilnehmern gemeinsames Medium.
Dieses gemeinsam benutzte Medium ermöglicht, im Gegensatz zum Ansatz der Direk-
tverkabelung, das Einsparen von Kommunikationsleitungen.

Feldbussysteme werden unter dem Gesichtspunkt der echtzeitfähigen Datenübertra-
gung entwickelt [Kut02, vgl. S. 21]. An Ethernet werden dabei als Ergänzungs-
und Ersatzkommunikationsmittel die gleichen Anforderungen hinsichtlich der zeitlich
vorhersehbaren Datenübertragung gestellt. Bei Standard-Ethernet ist aufgrund des
gleichberechtigten Buszugriffs durch die Kommunikationsteilnehmer keine Echtzeit-
fähigkeit gegeben [JJ01, vgl.]. Aus diesem Grund wurden verschiedene Ansätze und
Erweiterungen ausgearbeitet und standardisiert.

Dieses Dokument ermittelt die Voraussetzungen zur Echtzeitkommunikation mit Eth-
ernet und stellt verfügbare Implementierungen gegenüber. Ein Experiment prüft das
Echtzeitverhalten zweier verschiedener Ansätze zum Aufbau eines Echtzeitethernet-
netzes.

Acknowledgements

First of all I want to thank FH Prof. Dipl.-Ing. Johann Haag who gave me the oppor-
tunity to write this diploma thesis under his supervision. Thanks are also due to Dipl.
Ing. Thomas Baier, my tutor during my internship at kirchner SOFT GmbH, for his
support and advice on how to implement the experiment and the statistical analysis
afterwards.

Further I want to express my thanks to the library team of the university of applied
sciences in St. Pölten. Your assistance with interlendings was a great help. You
organized all the books I required for completing this diploma thesis on time.

And last but not least I would also like to thank my parents, my sisters and friends for
their ongoing encouragement during the time of writing. Thank you for wishing me
the best and for your patience when I tried to explain what I am actually describing in
this thesis.

“Science is a wonderful thing if one does
not have to earn one’s living at it.”

–Albert Einstein (1879 - 1955)

St. Pölten, Austria Rainer Poisel
June 15, 2007

Contents

Declaration ii

Abstract iii
English . iii
Deutsch . iii

Acknowledgements iv

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Focus of this publication . 1
1.2 Organization of this diploma thesis 2

2 Theoretical aspects 3
2.1 Terminology . 3

2.1.1 Process and Task . 3
2.1.2 Notation of data packets . 3

2.2 What is Real-Time? . 3
2.2.1 Deterministic behavior . 4

2.3 Real-Time data processing . 5
2.3.1 Requirements for real-time systems 5

2.4 Real-Time in communication technology 6
2.4.1 The ISO/OSI communication model 6
2.4.2 Topologies of real-time communications systems 7
2.4.3 Media access control communication systems 9

2.5 Classical Ethernet . 19
2.5.1 Structure and Topology . 19
2.5.2 Ethernet and Media Access (CSMA/CD) 20
2.5.3 Structure of ethernet frames 20
2.5.4 Typical Ethernet devices . 21
2.5.5 Limitations of Classical Ethernet 22

2.6 Ethernet as an industrial communication system 23
2.6.1 Fieldbusses . 23
2.6.2 Ethernet . 25

CONTENTS vi

2.7 Classification of requirements . 25
2.8 Hardware requirements . 25

2.8.1 The Central Processing Unit 25
2.8.2 Communication Elements 28

2.9 Software requirements . 31
2.9.1 The role of the process scheduler 32
2.9.2 Interrupt handling in real-time operating systems 33
2.9.3 Memory Addressing . 35
2.9.4 Paging . 35

2.10 Approaches for real-time ethernet 35
2.10.1 The QoS approach . 35
2.10.2 The TDMA approach . 42
2.10.3 The Token-Passing approach 45

3 Validation of real-time timing-behavior 47
3.1 Introduction . 47

3.1.1 The arrangement . 47
3.2 Evaluation of the real-time communication system 47

3.2.1 Traffic generation . 48
3.2.2 Traffic accounting . 51
3.2.3 Analysis of gathered data . 52

3.3 Preliminaries . 52
3.3.1 Used Hardware . 52
3.3.2 Software used in the experiment 53
3.3.3 Correlation of development and deployment 54
3.3.4 Steps toward a real-time network 54
3.3.5 Compilation of a patched kernel 54
3.3.6 Compilaton of RTnet . 56
3.3.7 Deploying the libraries . 57
3.3.8 Deployment of the real-time linux-distribution 57
3.3.9 Deployment of the real-time application framework 60
3.3.10 Starting RTnet . 60

3.4 Description of the real-time network-testing framework 61
3.4.1 Organization of the source code 61
3.4.2 Access to the parallel port 61
3.4.3 The Source . 62
3.4.4 The Sink . 62

3.5 RTnet - Latency Measurements . 62
3.5.1 Using TDMA networking functions 62
3.5.2 Gathering latency data . 62
3.5.3 Measurement results . 63

3.6 QoS - Latency Measurements . 65
3.6.1 Using standard networking functions 68
3.6.2 Gathering latency data . 68
3.6.3 Measurement results . 69

CONTENTS vii

4 Real-Time Ethernet applied - Industrial solutions 70
4.1 Technology overview . 70
4.2 ETHERNET Powerlink . 71

4.2.1 Conclusion . 72
4.3 Ethernet/IP . 72
4.4 EtherCAT . 72
4.5 PROFINET . 73

4.5.1 Integration of existing fieldbusses 74
4.6 MODBUS/TCP . 74
4.7 Sercos III . 75

4.7.1 Topology . 75
4.7.2 Real-Time communication 75

4.8 Prospect of industrial solutions . 76
4.8.1 Organization in interest groups 76
4.8.2 Compatibility and Enhancements 76
4.8.3 Fields of application . 76

A Source Code 77
A.1 Managing RTAI and RTnet . 77

A.1.1 The real-time data transmission Testing framework 81
A.2 Configuration files . 92

A.2.1 Switch configuration . 92
A.2.2 RTnet configuration . 92

Glossary 94

Bibliography 99

List of Figures

2.1 Graphical representation of the function of usefulness for accurate tim-
ing [LM06, p. 1] . 5

2.2 Graphical representation of the function of usefulness for concurrency
[LM06, p. 1] . 5

2.3 The ISO/OSI model [Hei02, cmp. p. 17 – 21] 6
2.4 Star topology . 8
2.5 Linear Bus topology . 8
2.6 Ring topology . 8
2.7 Tree topology . 8
2.8 Transmission request of the leftmost node 10
2.9 The master detects the transmission request 10
2.10 Data transmission of the leftmost node 10
2.11 Frame transmission [oEI05, cmp. p. 62] 11
2.12 Frame reception [oEI05, cmp. p. 63] 12
2.13 Influence of the slot time [Fis04, cmp. p. 28] 12
2.14 Throughput and offered load in CSMA and CSMA/CD networks [Hig98,

p. 268] . 15
2.15 Throughput and offered load with different media access schemes [JH86,

p. 187] . 15
2.16 Transmission delay in dependency of throughput [JH86, p. 338] . . . 15
2.17 The format of a token (as shown in [oEI98, p. 20]) 17
2.18 Physical structure of a token-ring network 18
2.19 Structure of an ethernet frame [oEI05, cmp. p. 49] 20
2.20 A typical automation network . 22
2.21 The real-time ethernet requirements model 25
2.22 The main components of a computer system [Sta03, cmp. p. 26] . . . 26
2.23 Storage-device hierarchy [SGG05, cmp. p. 9] 26
2.24 Interrupt handling hardware . 28
2.25 Basic elements of an output-queueing switch [LH04, cmp. p. 2] . . . 29
2.26 Preemptive scheduling [Abb06, p. 150] 33
2.27 Nonpreemptive scheduling [Abb06, p. 151] 33
2.28 Interrupt latency . 34
2.29 Interrupt abstraction [Wik07o, cmp.] 34
2.30 A tagged ethernet frame [oEI06, cmp. p. 239] 37
2.31 An ethernet network with VLANs 38
2.32 Hierarchical Token Bucket Packet Scheduling [KR05, cmp. p. 30] . . 41

LIST OF FIGURES ix

2.33 Linear service curve [KR05, cmp. p. 34] 41
2.34 Piecewise service curve [KR05, cmp. p. 35] 41
2.35 TDMA cycles . 42

3.1 Set-up of the real-time TDMA experiment 48
3.2 Set-up of the QoS experiment . 49
3.3 The arrangement for the experiment 50
3.4 Calculating the round-trip time . 51
3.5 Latency measured during a 3ms cycle 63
3.6 20 sent and received messages in hard real-time mode 63
3.7 Distribution of latencies with RTnet at a cycle time of 3000µs 64
3.8 Distribution of latencies with RTnet at a cycle time of 2000µs 64
3.9 Distribution of latencies with RTnet at a cycle time of 1000µs 65
3.10 Distribution of latencies with RTnet at a cycle time of 400µs 65
3.11 Latency with one slave . 69
3.12 Latency with two slaves . 69
3.13 Latency distribution with one slave 69
3.14 Latency distribution with two slaves 69

4.1 Stack modifications in real-time ethernet networks [CS06, cmp. p. 1] . 71

List of Tables

2.1 Notation of data packets . 3
2.2 Ethernet cabling and connectors . 19
2.3 Common fieldbus systems . 24

4.1 Pre-standards of ethernet based automation protocols 70

Chapter 1

Introduction

1.1 Focus of this publication

Digital communications can be categorized in several ways. This document focuses on
real-time and non-real-time communications. File transfer, e-mailing, remote-access
are examples of non-real-time applications. The performance metrics for these appli-
cations are typically the average packet delay and throughput. Much of the complexity
arises from the data-oriented loss-free communication between the systems. With real-
time communication the quality of the service additionally depends on the time when
data arrives at its recipient. Each message is associated with a deadline. This deadline
is an effect of the transportation delay or latency [AKRS94, cmp.].

[Jen07, cmp.] classifies real-time into two categories:

• hard real-time: the result of the operation is considered useless after the dead-
line

• soft real-time: the system responds with a decreased service quality in case of
a delay

Ethernet is a network technology. It was developed in the early seventies of the 20th

century at the Palo Alto Research Center in California. The first version was called
Alohanet and concepted for the shared radio frequency band in the atmosphere [B. 04,
cmp. p. 247-248]. The name “ethernet” derives from the media which is shared be-
tween all the nodes that are connected to the network - the so called “aether”. Twisted-
pair wiring became a big success. Because of the big competition between the man-
ufacturers, components used in an ethernet network are very cheap. This led to the
broad spreading of this technology as we know it today.

As the medium is shared, access to it has to be regulated. The so called “backoff”
algorithm describes what happens if two or more clients try to use the medium at the
same time [Hei02, cmp. p. 162-163]. Simultaneous access to the medium leads to a
collision, letting the clients wait for a random period. In the worst case, a client may
not be able to place its data onto the bus at all. Further it is not possible to determine
the point in time when the data arrives at its destination.

1.2. ORGANIZATION OF THIS DIPLOMA THESIS 2

This led to the development of many approaches for adapting ethernet hard- and soft-
ware for real-time applications. Till now this challenge has been incumbent on field-
busses. Fieldbusses are standardized communications systems for industrial applica-
tions which are usually real-time capable and very expensive.

1.2 Organization of this diploma thesis

This diploma thesis is divided into three major parts:

• Theoretical aspects: this chapter describes which requirements have to fulfilled
to gain real-time capability in ethernet communications. Both hard- and soft-
ware requirements are mentioned.

• The experiment: A real-time ethernet network has been implemented to demon-
strate how to apply theoretical knowledge. Two approaches are contrasted.

• Industrial solutions: enumerates available solutions on the European market and
how theoretical aspects as mentioned in the first part are applied.

Chapter 2

Theoretical aspects

2.1 Terminology

2.1.1 Process and Task

In scope of this document a process provides functions as reaction on real-time events.
These functions are also called tasks. In other words a process can be built of several
tasks [Sta03, cmp. p. 519].

Tasks can be further categorized into aperiodic tasks and periodic tasks. The former is
associated with an execution deadline and the latter has to be executed several times in
a specific time period.

2.1.2 Notation of data packets

[Har02, cmp. p. 28] lists what data packets on the layered network are called. This is
shown in table 2.1.

LAYER NOTATION

application layers Message
transport layer segment
network layer datagram
data link layer frame
physical layer bits (no packets)

Table 2.1: Notation of data packets

2.2 What is Real-Time?

There are several definitions for real-time computing. Some of them are presented
here:

A. Silberschatz, P. Galvin and G. Gagne defined the term “real-time” as follows:
“A real-time system is a computer system that requires not only that the computing

2.2. WHAT IS REAL-TIME? 4

results be ‘correct’ but also that the results be produced withing a specified deadline
period. Results produced after the deadline has passed – even if correct – may be of
no real value.” [SGG05, p. 695]

D. Abbott states in his publication that “The essence of real-time computing is not
only that the computer responds to its environment fast enough, but that it responds
reliably fast enough” [Abb06, p. 1]. So real-time programming focuses on meeting
timing constraints in the midst of random asynchronous events reliably.

The online encyclopedia Wikipedia defines the term as follows: “In computer science,
real-time computing (RTC) is the study of hardware and software systems which are
subject to a ‘real-time constraint’ – i.e. operational deadlines from event to system
response.” [Wik07m]

Typical fields of application range from “specialized devices” such as ordinary home
appliances (e.g. microwave ovens, dishwashers, etc.) [SGG05, cmp. p. 696], con-
sumer digital devices (e.g. digital cameras, MP3-players), communication devices
(e.g. cellular phones) to larger entities such as automobiles and airplanes. Here an-
tilock brakes are mentioned as a part of an automobiles real-time system. Each wheel
has a sensor which measures how much sliding and traction are occurring. Each of
these sensors continuously sends data to the system controller. This is were real-time
communications come into play. The controller in turn tells the braking mechanism of
each wheel how much braking pressure to apply.

Real-time computing can be divided into two forms: hard real-time systems and soft
real-time systems:

Hard Real-Time systems are classified as systems which lead to major damage
if they don’t finish their tasks till a defined dead-line. Devices meeting hard real-
time constraints are often called “safety-critical systems”. Examples are pacemakers,
engine-controls, etc [Sta03, cmp. p. 519].

Soft Real-Time systems are classified as systems with which it is still useful to
complete a task after the time limit has passed by [Sta03, cmp. p. 519].

2.2.1 Deterministic behavior

Real-time and deterministic behavior of a computer system are strongly related. [Vir07,
cmp.] states that the state of a deterministic system is always well-defined. In a deter-
ministic communication system all states of a data transmission can be exactly prede-
termined.

Hard real-time systems are strongly deterministic. It is possible to predict the timing
behavior of all states a system could be in [LM06, cmp. p. 10].

2.3. REAL-TIME DATA PROCESSING 5

2.3 Real-Time data processing

2.3.1 Requirements for real-time systems

The expected requirements for real-time systems are identified in [WB05, p. 1].

2.3.1.1 Accurate Timing

Results of real-time operations have to be available in due time (before the so called
deadline). Cyclic times and sampling instances have to be preserved. Another timing
issue is the reaction upon events. A real-time system has to react in a defined period to
randomly arising internal or external events.

Douglas Jensen expressed the value of the behavior of real-time systems in time/utility
functions [Jen07, cmp.]. Figure 2.1 shows the function of usefulness which is also
stated in [LM06, cmp. p. 1]. The discrete function of usefulness (fuse(t)) for hard
real-time systems can be expressed as shown in formula 2.1.

execution deadline
td

0

1

usefulness

time

action
function of usefulness

Figure 2.1: Graphical representation of the function
of usefulness for accurate timing [LM06, p. 1]

execution time
td

0

1

usefulness

time

-Jitter +Jitter

Figure 2.2: Graphical
representation of the
function of usefulness for
concurrency [LM06, p.
1]

A system that handles events (or actions) after the deadline of execution (td) is of no
value (t > td). In soft real-time systems events handled after the execution deadline
are of limited value (0 < fuse(t) ≤ 1).

fuse(t) [1] =
{

1, t ≤ td
0, t > td

(2.1)

2.3.1.2 Concurrence

Many tasks have to be managed at the same time, each with its own timing require-
ments [WB05, p. 1]. This characteristic defines a point in time when actions have to
be executed. The deviation between actual time of execution and the optimal point of
execution is called “jitter” and can be of positive and negative value [LM06, cmp. p.
1]. The timing window can be seen as the time period between negative and positive

2.4. REAL-TIME IN COMMUNICATION TECHNOLOGY 6

jitter. Actions that are performed too early are of no value as with actions that are
executed too late.

Figure 2.2 depicts the relations between execution time and usefulness. Thus events
have to occur within the timing window.

2.4 Real-Time in communication technology

This section describes the communications model which can be seen as a reference
model for network communications in general. The implementation of how a network
is integrated in an operating system is often called the “stack”. Implementations of
real-time ethernets show differences in how their stack is implemented, which can be
best compared with the generic ISO/OSI communications model.

2.4.1 The ISO/OSI communication model

[WB05, cmp. p. 257] states that in 1983 the ISO/OSI model was standardized in
standard number ISO 7498. This led to improvements in communications between
devices of different manufacturers.

The model splits communication into 7 layers. Each layer has clearly defined functions
and offers some services for the next higher layer. Communication between layers
happens through so called “primitives” [Hei02, cmp. p. 20-21]. As data perambulates
through the stack (see “real communication path” in figure 2.3), header information is
appended to user-data with each passed layer. On the receiver site this information is
removed and interpreted by the regarding layer. So there are direct “virtual connec-
tions” (see figure 2.3) between the layers.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Data Link Layer

Physical Layer

Network Layer

Application Layer

Presentation Layer

Session Layer

Transport Layer

Data Link Layer

Physical Layer

Network Layer

Transmission media

real communication path
virtual connection

Sending process Receiving process

Figure 2.3: The ISO/OSI model [Hei02, cmp. p. 17 – 21]

The physical layer defines the communication media (cable, air, fiber, etc.). Data is
transmitted as a bit stream. Typical physical layer devices are modems, repeaters and

2.4. REAL-TIME IN COMMUNICATION TECHNOLOGY 7

transceivers1.

The data link layer is used to ensure flawless data transmission between nodes. The
bitstream from layer 1 is packed into frames. The second layer can further be divided
into two sublayers:

• the ‘media access control layer’ generally implements IEEE-Standards 802.3
(CSMA/CD), 802.4 (Token Bus), 802.5 (Token Ring) and FDDI and

• the ‘logical link control layer’ offers a unified interface for network layer proto-
cols. This part of the data link layer is media independent.

The separation into two sublayers guarantees the interchangeability of media-access
technologies. So it is e.g. possible to operate an IP network on top of ethernet, token-
ring, etc. without any further intervention. Flow control is typically offered by the data
link layer. Bridges and switches are layer 2 devices which are used for interconnection
between network segments (see 2.5.4.2 for further explanations).

The network layer offers routing capabilities. Routing enables inter network con-
nections. Many networks can be combined to a big logical network. The most common
protocol on this layer is the internet protocol (IP). This protocol offers the possibility
of a logical address scheme which can be configured by a network administrator.

The transmission layer provides a transparent data transmission between endsys-
tems. Protocols on this layer can be categorized into connection-oriented and connection-
less protocols. Connection-oriented protocols ensure the correct reception of seg-
ments. TCP is a connection-oriented protocol. UDP is a connection-less protocol.
Compared to TCP the latter offers better performance, but there is no guarantee that
packets have arrived at their destination (but this functionality could be implemented
by upper layer protocols as is the case with NFS).

Layer 5 to 7 protocols can only be delineated vaguely. The major task of layer 5
protocols is to convert data for a convenient presentation. Application specific tasks
(electronic mail, file transfer, etc.) are typically performed by layer 7 protocols. Char-
acteristic protocols are RPCs of the NFS protocol (layer 5), ASN.1 (layer 6) and ap-
plication specific protocols such as FTP, SMTP and HTTP (layer 7).

2.4.2 Topologies of real-time communications systems

The physical arrangement of nodes in a network is called the topology. [Flo05, cmp.]
lists and displays four of them, whereas [WB05, cmp. p. 260] describes the advantages
and the disadvantages of these topologies.

1this is actually a made-up word: transmitter-receiver

2.4. REAL-TIME IN COMMUNICATION TECHNOLOGY 8

Figure 2.4: Star topology Figure 2.5: Linear Bus topology

Figure 2.6: Ring topology Figure 2.7: Tree topology

2.4.2.1 Star

Figure 2.4 shows a typical star topology. The central station is also called the master.
In case of ethernet this is usually a hub or a switch which is connected to all other
stations, the so called slaves. Each data transmission occurs over the master which
in turn can get heavy loaded due to this fact. In case of a failure on the master no
communication between the other nodes is possible. Therefore the star topology can
be seen as a single point of failure system.

2.4.2.2 Bus

All slaves are connected to a shared medium, the so called bus (see figure 2.5). Mes-
sages on the bus can be received by all connected nodes. In case a slave detects its
address in a received message it processes the contained message data.

2.4.2.3 Ring

Connections are constraint as point-to-point links and run from one node to the next
(the structure is depicted in figure 2.6). As in the bus topology, only messages which
are addressed to the specific node get processed. The ring topology is a multiple point
of failure system. One failure in the ring leads to a system in which communication
does not work at all. Compared to the star topology response times are longer in

2.4. REAL-TIME IN COMMUNICATION TECHNOLOGY 9

general because direct communication with the master is not possible in most cases.

2.4.2.4 Tree

A tree structure is a combination of star and bus topology (figure 2.7). Participants in
one branch are able to communicate without the root communication object. With this
topology it is possible to constrain communication hierarchies.

2.4.3 Media access control communication systems

Four different methods for media-access have established themselves in recent years:

• Polling

• CSMA/CD and CSMA/CA

• Token-Passing

• TDMA

2.4.3.1 Polling

Polling is realized in a master-slave relationship in most cases. Each slave is cyclically
requested by the master to transfer data.

The arbitration function determines the strategy the master uses to manage media-
access for all the nodes. E.g. the master queries all nodes sequentially for transmission
requests. After that a priority algorithm in the master determines when a specific
participant is allowed to use the bus by itself for a specific amount of time for its data
transmissions. Nodes can also be queried many times in one cycle to reduce message
response time.

[WB05, cmp. p. 263] states that the polling strategy can be implemented easily. One
of its downsides is that the master’s queries reduce the transmissibility of the medium.
As such bandwidth gets wasted. An advantage is, that worst-case reaction time can
easily be calculated (formula 2.2). The time for a communication cycle (tcycle) is
proportional to the number of participating nodes.

tworst [s] = 2 ∗ tcycle [s] (2.2)

Figure 2.8 to 2.10 shows how tworst is composed. One requirement for the worst trans-
mission time is that all nodes in the network have to transmit data at the same time. The
first figure (2.8) displays that the leftmost slave initiates its request to transmit data (1a)
when the second leftmost slave is acquired to disclose its request for data transmission
(1b). The leftmost node has to wait until all other slaves have been acquired. This
requires the period of one cycle time = tcycle (figure 2.9) (2a). After that the second
leftmost slave is allowed to transmit its data (2b). Processing all other nodes also lasts
for the period of one cycle time tcycle. Then the leftmost slave is allowed to transmit
data (figure 2.10) (3). This sums up to a total of two times the cycle time tcycle.

2.4. REAL-TIME IN COMMUNICATION TECHNOLOGY 10

Master

Slave Slave Slave Slave Slave

1a 1b

Figure 2.8: Transmission request of
the leftmost node

Master

Slave Slave Slave Slave Slave

2a 2b

Figure 2.9: The master detects the
transmission request

Master

Slave Slave Slave Slave Slave

3

Figure 2.10: Data transmission of the leftmost node

The process image which represents the current state of Input/Outputs in an auto-
mated system is set in a polling fashion after the program cycle in a PLC . PLCs are
used as controllers for industrial scenarios. Programs in a PLC are usually executed in
a cyclic way, thus execution occurs in real-time.

2.4.3.2 CSMA/CD

Multiple users share the same medium. Media access therefore has to be limited in
some way. The technology used by Ethernet is called “CSMA/CD”, which is an abbre-
viation for “Carrier Sense Multiple Access with Collision Detection” [Gra03, cmp.].
“Carrier sense” means that nodes which want to access the medium, listen for ongoing
transmissions. Collisions occur when two or more nodes want to access the medium
at the same time. This case is recognized and leads to the “Collision Detection” part
in CSMA/CD.

Media access is described in [oEI05, p. 62–63]. When transmitting a frame the sender
“listens” to the medium (carrier sense) if it is available for transmission. If so, the
sender places its data onto the bus and continues to listen if a collision happened. In
the case of a collision the sender continues to transmit data (jamming signal) so that
other nodes can detect the collision too. The number of bits transmitted in this case
is called “jam-size”. Usually 32 more Bits are transmitted after a collision [Gra03,
cmp.]. The internal attempts counter is incremented. If the value of the increments
counter reaches a specific value, the node aborts its request to transmit data (excessive
collision error). After that the backoff is calculated. That is a random time period the
sender has to wait for a retry. This process is depictured as a flowchart in figure 2.11.

The receiving procedure is pictured in figure 2.12. As with the transmission of frames,
collision detection occurs during reception too. In case a frame has been corrupted
during transmission it has to be ignored by the operating system and the ethernet hard-

2.4. REAL-TIME IN COMMUNICATION TECHNOLOGY 11

ware. This is recognized when the actual frame size differs from the frame size given
in the ethernet header.

Transmit Frame

assemble frame

Is another station
transmitting?

start transmission

Collision detected?

transmission
completed?

Done.
transmit OK.

send jamming
signal

increment sending
attempts

to many
attempts?

compute backoff
time

wait backoff time

Done.
excessive collision Error.

yes

no

yes

no

yes

no

yes

no

Figure 2.11: Frame transmission [oEI05, cmp. p. 62]

2.4.3.3 The segment size

A parameter regarding the dynamics of collision detection is the so called “slot time”.
It describes three aspects of collision handling [oEI05, p. 101]:

1. The acquisition time of the medium describes how long the medium has to be
busy to be able to detect a collision.

2. The maximum length of a frame fragment in case of a collision. Transmission
is aborted immediately if a collision occurred.

3. The scheduling quantum in case of a retransmission which has been caused by
a collision. As mentioned above the random time period, the backoff time, is a
multiple of the slot-time (51.2 µs in case of 10Mb ethernet).

Figure 2.13 demonstrates how the medium is acquired. When the first bit of transmitted
data arrives at the most distant node in the same network segment it can be deemed to
be busy (see digit “1” in the figure). In case of a collision the signal of the collision
has to get back to the sender. In the worst case scenario this is the distance between
the most distant nodes in the network segment (see digit “2” in the figure). Data has to

2.4. REAL-TIME IN COMMUNICATION TECHNOLOGY 12

Receive Frame

start receiving

done
receiving?

frame too
small? (collision)

recognize
address?

frame too
long?

valid frame
check sequence?

valid length
type field?

disassemble frame

Done.
receive OK

Done.
FrameTooLong

Done.
FrameCheckError

Done.
LengthError

no

yes

no

yes

yes

yes

no

no

yes

no

yes

Figure 2.12: Frame reception [oEI05, cmp. p. 63]

Termination Termination

Node A

Node B

2
1

Figure 2.13: Influence of the slot time [Fis04, cmp. p. 28]

be transmitted as long as it takes the signal to propagate over the distance of “1” and
“2” added together to be able to detect a collision correctly.

Collisions only occur in half duplex CSMA/CD networks. Four parameters collude
therefore when determining the size of such an ethernet segment:

1. physical distance of the most distant nodes sphys

2. the slot time tslot (which can be equaled to the minimum frame size)

3. the velocity of propagation vprop

4. the bitrate b

2.4. REAL-TIME IN COMMUNICATION TECHNOLOGY 13

5. the minimal frame size fmin

This coherence can be expressed in a formula 2.3. The slot time (tslot, formula 2.4) is
the relation between the minimal frame size (fmin) and the bit rate (b).

sphys [m] = tslot [s] ∗ vprop [m/s] ∗
1
2

(2.3)

tslot [s] =
fmin [bit]

b [bit/s]
(2.4)

With 10 Mb Ethernet which has a minimal frame size of 512 Bits, a velocity of prop-
agation of 2/3 * c [Hig98, p. 240] (with c being light speed = 3 * 108m/s) and taking
into consideration the two way factor of 1/2 the physical size is:

sphys =
512

10 ∗ 106
∗ 1

3
∗ c ∗ 1

2
≈ 2500m (2.5)

Collisions only occur in half duplex ethernet. Switches and bridges overcome this
situation. A requirement for a collision free ethernet network is microsegmentation.
Here each device in a network has its own switch-port. In this case other factors like
queueing in the switch fabric influence the real-time behavior. The random backoff
is one of the factors that leads to non-real-time behavior of ethernet networks [JJ01,
cmp.]. Real-time ethernet has to overcome this weak spot. This is shown in 2.4.3.

2.4.3.4 Performance analysis of CSMA/CD networks

The performance of a network with CSMA/CD media-access depends largely on three
factors: S (the throughput), a (the effective channel length) and G (the offered load).

The effective channel length “a” can be seen as the ratio of propagation time (tprop, e.g.
2/3 of light speed in copper cables) and the transmission time (ttrans) of a frame (see
formula 2.6). The effective channel length decreases with the transmitted frame-length
[Hig98, cmp. p. 238].

a [1] =
tprop [s]

ttrans [s]
(2.6)

In [Hig98, cmp. p. 259] throughput “S” is defined in formula 2.7. The offered load
“G” is defined in formula 2.8.

S [bit/s] = λ [packet/s] ∗ x [bit/packet] (2.7)

G [bit/s] = γ [packet/s] ∗ x [bit/packet] (2.8)

The average rate of actually transmitted traffic, including new and retransmitted pack-
ets is to be γ packets/s. Traffic in an error-free channel is generated with an average
rate of λ packets/s. The packet length is x bits/packet.

[JH86, p. 177] defines the terms throughput “S” and offered load “G” as follows:

2.4. REAL-TIME IN COMMUNICATION TECHNOLOGY 14

• S – “Average number of successful transmissions per packet transmission time,
P”

• G – “Average number of attempted packet transmissions per packet transmission
time, P”

These characteristic values are calculated with formulas 2.9 and 2.10 from [JH86, cmp.
p. 158] and [JH86, cmp. p. 177] respectively.

S [1] =
λ [packet/s] ∗X [bit/packet]

R [bit/s]
(2.9)

In case of formula 2.9 and 2.10 “S” and “G” are a dimensionless values. X expresses
the number of bits per packet and R is used as a symbol for the channel bandwidth.
P in this case is the probability for a good transmission. It can further be stated as
the probability of no additional transmissions in the vulerable interval of length 2P
(in words: 2 times the packet transmission time). The probability depends largely
on how media access is implemented. “In the case of random access methods, the
assumption of Poisson traffic is extended to include the retransmitted packets as well
as new arrivals to the network.” [JH86, p. 170]. Formula 2.11 which has been taken
from [JH86, p. 177] states how formula 2.10 is applied and throughput in a random
access networks (pure ALOHA access scheme) can be calculated. With this access
scheme collisions may occur. Therefore the probability for good transmission depends
on offered load.

S [bit/s] = G [bit/s] ∗ P{good transmission} [1] (2.10)

S [bit/s] = G [bit/s] ∗ e−2G
[1] (2.11)

Thus the correlation between publication [Hig98] and [JH86] can be stated with the
equation given in formulas 2.12 and 2.13.

x [bit/packet] =
S [bit/s]

λ [packet/s]
=

G [bit/s]

γ [packet/s]
⇒

S [bit/s]

G [bit/s]
=

λ [packet/s]

γ [packet/s]
= P{good transmission} [1] (2.12)

x [bit/packet] = X [bit/packet] (2.13)

Throughput in an ethernet network depends largely on the average network load and
frame size [JH86, cmp. p. 336]. Figure 2.14 shows the correlation between throughput
and offered load in dependency of the used media access scheme. Larger frames (a =
0.005) gain a better throughput in networks with similar media access under heavy
load (more offered load) than smaller ones (a = 0.05).
Figure 2.15 shows the correlation between “S” and and “G” with TDMA (see 2.4.3.8
and 2.10.2 for further explanations) under idealized central control. In this case the
relation between throughput and offered load can be stated as shown in formula 2.14.

2.4. REAL-TIME IN COMMUNICATION TECHNOLOGY 15

Figure 2.14: Throughput and offered
load in CSMA and CSMA/CD net-
works [Hig98, p. 268]

Figure 2.15: Throughput and of-
fered load with different media access
schemes [JH86, p. 187]

G [bit/s] = S [bit/s] (2.14)

Thus the input and output packet rates are equal for the entire network. The channel
is blocked if G becomes equal or greater than 1. The network can remain in this state
only if packets are dropped [JH86, p. 184].

Latency or the average transfer delay which is defined as “the time from arrival
of the last bit of a packet into the station of a network until the last bit of this packet is
delivered through the network to its destination station” [JH86, p. 159]. Ethernet is a
non-deterministic network and as such the average time it takes to convey a data frame
from its source to its destination is unpredictable. The latency of a packet largely de-
pends on the current network load. The likeliness of collisions rises with an increasing
number of frames on the bus (Figure 2.16)

Figure 2.16: Transmission delay in dependency of throughput [JH86, p. 338]

Normalized average transfer delay can be expressed with formula 2.15.

2.4. REAL-TIME IN COMMUNICATION TECHNOLOGY 16

T̂ [1] =
T [s/packet]

X [bit/packet]

R [bit/s]

=
R [bit/s] ∗ T [s/packet]

X [bit/packet]

(2.15)

T expresses the average transfer delay per packet. The time it takes to convey a packet
over the transmission channel is then X/R. Another interpretation of the formula is
that the normalized average transfer delay is the relation between the time it takes to
transfer one bit from one end to the other and the time it takes to transfer one packet.
The value of T̂ is therefore dimensionless.

2.4.3.5 CSMA/CD in real-time applications

Ethernet has been designed to offer equality for all participating nodes in a network
[Vir07]. Communication relations often change in such a network and therefore the
timing-characteristics are not guaranteed to be of a cyclic fashion.

[LM06, cmp. p. 10] states that ethernet is convenient for accurately timed data trans-
mission in most of the cases but not for simultaneous data exchange which is required
for synchronization purposes (see 2.3.1.2). The jitter of classical ethernet data trans-
mission is too unpredictable to be able to transport real-time data. This can be led back
to unforseeable waiting times in packet or frame queues of network devices such as
bridges, switches and routers.

2.4.3.6 CSMA/CA

Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA) extends the CS-
MA/CD access scheme in the fact that no data is lost due to collisions. Like in CS-
MA/CD nodes listen to the medium until it is free for a transmission. A station has to
defer its transmission when the medium is “busy”. If the medium is “idle”, the station
is permitted to transmit data [Wik07d, cmp.].

Collisions are avoided with a special kind of signal transmission [WB05, p. 264] which
is known as “wired and”. Here a digital ’0’ has precedence over a sent ’1’. So a digital
’1’ can be overwritten by a digital ’0’. Thus messages do not get destroyed by two or
more nodes transmitting at the same time.

CSMA/CA implies a priority scheme. With the algorithm mentioned above a message
containing more leading zeroes (’0’) than a “competing” message achieves itself. This
makes CSMA/CA a valid media-access algorithm for real-time systems.

CSMA/CA is used in popular real-time communication systems such as CAN . During
a data transmission nodes listen to the medium and compare their data to the data
on the bus. In case of an irregularity the client stops to send data. The first part of
a CAN message is the message identifier which is used by the arbitration scheme.
Prioritization is accomplished by the message itself and not by the participant in the
communication [WB05, p. 280].

A different field of application are wireless networks. Here a sender cannot listen to the

2.4. REAL-TIME IN COMMUNICATION TECHNOLOGY 17

channel during transmission thus collision detection is not possible. Another reason is
the hidden station problem [Fis04, p. 22]. In this case node A is in range of receiver
B, but not in range of sender C. Therefore node A cannot know, that receiver B and
sender C are exchanging data.

2.4.3.7 Token-Passing

Media-access is deterministic with token-passing. Token ring usually operates as a
multi-master network. A token, which can be understood as a bundle of bits, circulates
in a logical ring between the masters. Only the master which holds the token is allowed
to occupy the media for a specific time period. In case a master does not need to
exchange data, the token is passed on to the next master [WB05, p. 264].

The possibility to build multimaster systems with communication directly between
masters and a master with its associated slaves is an advance over other technologies
such as ethernet. The response time based on the request to transmit data is predictable.

Token-Ring is a local area network technology and can be seen as a field of applica-
tion for the token-passing media access. It was developed and promoted by IBM in the
early 1980s and standardized as IEEE 802.5 by the Institute of Electrical and Electron-
ics Engineers [Wik07p, cmp.]. The introduction of 10BASE-T ethernet (see 2.5.1.1)
was a big success leading to IBM not promoting token ring anymore. The format of a
token-ring token is shown in figure 2.17. Standardized bitrates for 802.5 token ring are
4Mb/s, 16Mb/s, 100Mb/s and 1Gb/s [Wik07p, cmp.]. Figure 2.18 shows the typical
structure of a token-ring network (as shown in [oEI98, p. 17]).

SD AC ED
SD = Starting Delimiter (1 octet)
AC = Access Control (1 octet)
ED= Ending Delimiter (1 octect)

Figure 2.17: The format of a token (as shown in [oEI98, p. 20])

With the introduction of switched ethernet, token ring lagged badly behind the former
technology in both performance and reliability. Higher sales of ethernet components
drove down prices further which led to a compelling price advantage over token ring.

2.4.3.8 TDMA

[Her91, cmp. p. 5pp] enumerates two categories of real-time systems:

• Event triggered systems with which processing activity is triggered through the
occurrence of a specific event

• Time triggered systems which initiate activities periodically in real-time at pre-
determined points in time

Time Division Multiple Access (TDMA) breaks communiation down into so called
cycles. These cycles start at predefined points in time and are further subdivided into
slots. Slots represent a span in which a specific node in the network is allowed to access
the medium. This approach is therefore a deterministic media-access technique. The

2.4. REAL-TIME IN COMMUNICATION TECHNOLOGY 18

TCU TCU TCU
Concrator

Concrator

Host 1 Host 2 Host 3

Physical Medium Main Path Physical Medium Back-Up Path

Figure 2.18: Physical structure of a token-ring network

channel is reserved for each node for a specific time period. Media-access happens
mutual exclusive. In general there are two variants [Wik07l, cmp.]:

Statical assignment of time slots. This method is also known as “synchronous time
division” (STD). Before participants begin to communicate they are assigned a fixed
length time slot. These assignments can in turn happen in two ways [WB05, p. 265]:

1. time slots of constant length: one cycle is split up into time slots of equal size:
ti = T/n with n being the number of nodes and T being the time period for a
communication cycle. This method is easier to implement but in case a node has
nothing to transmit, bandwidth is wasted. The start time of a specific time slot
evaluates to: tStarti = i ∗ ti = i ∗ T/n

2. time slots of variable length: here communication participants are assigned time
slots of different sizes. This leads to a better allocation of available time. Nodes
with higher requirements get more time to transmit their data, nodes with lower
requirements still have enough time to send their data.

The cycle time can always be calculated as:

n∑
i=1

ti [s] ≤ T [s] (2.16)

Dynamic assignment of timeslots overcomes the disadvantage of unused or wrong
sized time slots. Time slots are used on demand. To be able to differentiate between
data of the specific nodes channel information has to be added. This leads to an over-
head that has to be taken into count when calculating the available bandwidth. This
method is also known as “label-multiplexing” [Wik07l, cmp.].

2.5. CLASSICAL ETHERNET 19

2.5 Classical Ethernet

Ethernet is a large, diverse family of frame-based computer networking technologies
for local area networks (LANs). The name comes from the physical concept of the
ether. It defines a number of wiring and signalling standards for the physical layer,
through means of network access at the Media Access Control (MAC)/Data Link
Layer, and a common addressing format [Wik07f].

The technology has been developed in the late 1970s [Kut02, cmp.] by the Ameri-
can company “Xerox” in Palo Alto, California. It has been demonstrated with 100
computers which where connected together with a transmission speed of 3MBits/s.

Ethernet is now standardized by the Institute of Electrical and Electronics Engineers
(the so called IEEE) in standard 802.3 and its sub standards. The ease of installation, its
flexibility, versatility and the simple operation were keys to success of this technology
[Hei02, p. 161]. [BS07, cmp.] states that ethernet was cheap compared to different
technologies such as IBMs token ring technology.

2.5.1 Structure and Topology

The original Ethernet used a coaxial cable which can also be seen as a logical bus
structure. Today the star structure is also common with Ethernet as a network technol-
ogy.

2.5.1.1 Ethernet Media and Connectors

Cabling and connectors are currently standardized from 10Mb/s up to 10Gb/s. The
ethernet standard (IEEE 802.3 Section 1, [oEI05, p. 14–17]) lists more than 30 of
them. The most common were taken from [B. 04, p. 206, 207] and shown in table 2.2.

NAME MEDIA MAX. LENGTH TOPOLOGY

10BASE2 50-ohm coaxial (thinnet) 185m Bus
10BASE5 50-ohm coaxial (thicknet) 500m Bus
10BASE-T EIA/TIA CAT 3,4,5 UTP 100m Star

100BASE-T EIA/TIA CAT 5 UTP 100m Star
100BASE-FX 62.5/125 400m Star

multimode fiber
1000BASE-CX STP 25m Star
1000BASE-T EIA/TIA CAT 5 UTP 100m Star

1000BASE-SX 62.5/50 micro 275m (62.5 micro) Star
multimode fiber 550m (50 micro)

1000BASE-LX 62.5/50 micro 440m (62.5 micro fiber) Star
multimode fiber 550m (50 micro)

Table 2.2: Ethernet cabling and connectors

2.5. CLASSICAL ETHERNET 20

2.5.2 Ethernet and Media Access (CSMA/CD)

Ethernet uses CSMA/CD for media-acces. This technology has been described in
2.4.3.2.

2.5.3 Structure of ethernet frames

Preamble
(7 octets)

Start Frame
Delimiter
(1 octet)

Destination
Address
(6 octets)

Source
Address
(6 octets)

Length/Type
(2 octets)

MAC Client Data
and/or Pad

(46-1500 octets)

Frame Check
Sequence
(4 octets)

Octets within Frames transmitted left to right

LSB

MSB

Bits within
Frame transmitted
left to right

Figure 2.19: Structure of an ethernet frame [oEI05, cmp. p. 49]

7 octets make up the preamble of an ethernet frame. It is used for bit synchronization
at the receiver of the frame and consists of a bit pattern of “101010101 ...”. The start
frame delimiter signals (bit pattern: “10101011”) the receiver the beginning of MAC
data. If necessary the data part is padded so that ethernet frames are at least 64 Bytes
long. The tallest frame is 1518 Bytes long (without the preamble and the start frame
delimiter octets).

2.5.3.1 Addressing

Source and destination of an ethernet frame are addressed via a MAC-Address. It is 48
Bits long and therefore officially called MAC-48. The address space is 248 individual
addresses [Wik07j, cmp.].

The first bit of a MAC-48 address determines, if this address is a group (1) or an
individual (0) address. Group addresses identify one or more, or all of the stations
connected to the LAN. The administration of MAC-Addresses can be divided into two
groups [oEI05, cmp.]:

universally administered address is uniquely assigned to a device by its manu-
facturer. The first three bytes identify the manufacturer. This part is also known as
Organizationally Unique Identifier (OUI). The last three bytes are assigned by the
organization refered by the OUI. The only requirement is that the MAC address is
unique.

locally administered address is assigned to an interface by a network administrator.
In this case the MAC address does not contain an OUI.
The second bit of the MAC address decides whether it is a universally administered
address (0) or not (1).

2.5. CLASSICAL ETHERNET 21

2.5.4 Typical Ethernet devices

2.5.4.1 Repeater and Hub

The size of an ethernet segment depends largely on two factors:

• signal degradation

• timing reasons (the slot time generally)

The former can be overcome by so called repeaters. These devices take the signal they
receive to retransmit it on the other port. Beside the retransmission the signal gets
refreshed and retimed at the bit level. Repeaters operate at the physical layer of the
OSI model.

Hubs can be understood as multiport repeaters. The number of ports is currently typi-
cally 4 to 24. Hubs change the network topology from a linear bus to a star structure.
Three major groups arose over the time ([B. 04, p. 215]):

Active hubs need power to amplify (refresh) the signal before passing it out to the
other ports

Intelligent hubs include a microprocessor chip and diagnostic capabilities

Passive hubs are only used to share the media (no refresh)

[B. 04, p. 214] states that no more than five network segments can be connected end-
to-end using four repeaters (or hubs), but only three segments can have hosts on them.
This rule has no validity in switched networks.

With these devices collisions may still occur because the medium is just shared be-
tween all participating nodes. It is therefore only possible to transmit data half duplex.

2.5.4.2 Switch and Bridge

The following paragraphs apply to switches as well as bridges. For simplicity in some
cases only bridges are mentioned.

Switches and Bridges operate at the data link layer of the OSI model and are used
to link different network segments. Bridging is standardized in the 802.1D standard.
Decisions are met intelligently. Switches and bridges have an address table (thus they
are more intelligent than hubs or repeaters) installed. This table is consulted when a
frame arrives at a switch-port. Three cases are differentiated [Fai01, cmp.]:

• The address is not found in the table. This may happen if this is the first frame
that is received from a station or if the address record was deleted because it
was too old. Another reason for this case is that the bridge ran out of addresses.
This occurs in case of MAC-flooding, a network attack to let a bridge behave
like a hub (sending out received frames on all switch-ports). The received frame

2.5. CLASSICAL ETHERNET 22

is sent out on all ports except the one the frame was received on. This is also
called flooding.

• If the address is found in the interface table of the receiving port it is discarded
because it already has been received by the destination.

• If the address is found in an interface table different then the port on which it was
received, the bridge forwards the frame to the port associated with the address.

In a pure switched network no collisions are possible. The medium is only shared in
the bridge’s fabric. Therefore a pure switched network offers one collision domain per
switch-port. Such an ethernet network is still not real-time capable because overload
may still happen. Additionally the behavior of bridges in case of congestion is not
standardized. Most bridges hold back messages in a buffer of limited size. In case of
a full buffer new messages are discarded.

The main difference between switches and bridges is the number of available ports.
Bridges usually connect 2 ethernet segments [B. 04, cmp. p. 219].

2.5.5 Limitations of Classical Ethernet

Classical ethernet is not real-time capable as mentioned in 2.4.3.2. Using this technol-
ogy is still useful when the system is not required to fulfill real-time requirements.

CAD CAP PPC Workstation Fileserver

Manufacturing Line
Supervisor

.....

Cell Computer

Machine RobotWZM?

PLC NC RC

Cell Computer

Machine RobotWZM?

PLC NC RC

Planning
Layer

Supervisor
Layer

Coordination
Layer

Control
Layer

Process
Layer

Local Area Network

Manufacturing/Factory Network

Cell Network

ms

0.1sec.

sec.

min.

Requirements

Response
Time

Data
Volume

GByte

MByte

kByte

Bit, Byte
Fieldbusses Fieldbusses

Figure 2.20: A typical automation network

Figure 2.20 shows a typical automation network [WB05, p. 255]. Devices are arranged
and connected in a hierarchical fashion. Requirements on real-time data transmission
are different. On the highest layer products are defined and drafted. Production Plan-
ning and Production Control (PPC) and Computer Aided Planning (CAP) tools are
used to create and document the automated system. Data from this layer is passed on
to the manufacturing line supervisor. This device handoffs its processed data to the cell

2.6. ETHERNET AS AN INDUSTRIAL COMMUNICATION SYSTEM 23

computers which in turn distribute their data in real-time to tool-machines and robots.
The latter is used to manufacture products and pass feedback data for visualization
purposes back to devices in the higher layers.

The required response time is inversely proportional to the transmitted data volume.
On the topmost layer transported data is often based on file transfers or blocks of
data. The only timing-requirements are demanded by humans who use this system.
On the lowermost layer only small data packets are exchanged. This is where real-
time requirements have to be fulfilled. At present the trend goes towards ethernet-
based real-time networks which use cheap off the shelf hardware to gain a continuous
concept in factory networks.

2.6 Ethernet as an industrial communication system

Currently the trend goes towards the deployment of real-time ethernet as a replacement
of fieldbus systems in automation technology. This has the advance of a consistent
networking scheme in company and manufacturing networks. Fieldbus systems define
the requirements which industrial ethernet has to meet in the future. Therefore a small
introduction is given here.

2.6.1 Fieldbusses

“A fieldbus system is an industrial communication system that is used to connect a
multitude of field devices such as sensors, actuators and drives.”[Wik07g]

The intention for the development of fieldbusses was basically the reduction of cabling
effort. Before the introduction of fieldbusses devices where connected to the controller
directly. This was also called “parallel” cabling scheme. After that a “serial” cabling
scheme established, many devices could be connected to the controller via one cable.
Thus fieldbusses reduced cabling costs enormously.

On the other hand fieldbus systems are more complicated than the parallel cabling
scheme. Data has to be transmitted according to a given protocol. During the years
many fieldbus protocols have established, each for its own purpose. Protocols are not
compatible among each other. Devices which meet fieldbus standards can be very
expensive and response time is in general worse than with direct connections. This
can be led back to the encapsulation of data into frames or packets and competiton
between devices when accessing the transmission medium.

2.6.1.1 Common fieldbus systems

Table 2.3 lists a decent list fieldbus systems which have been developed. Each fieldbus
protocol has specific characteristics for specific deployment scenarios. E.g. Interbus
can be used to transmit data over distances of up to several kilometers, Safetybus can
be used in hazard areas where e.g. explosions can occure and Profibus can be used
where short response times are required, e.g. for motion control.

2.6. ETHERNET AS AN INDUSTRIAL COMMUNICATION SYSTEM 24

NAME MAIN FIELD OF APPLICATION STANDARD

CAN automotive automation EN 50325-4
Profibus industry automation IEC 61158/IEC 61784
Interbus industry automation EN 50254/IEC 61158

ASi industry automation EN 50295/IEC 62026-2
Modbus industry automation Modbus-TCP as pre-standard

IEC PAS 62030
LON central building control systems EN14908/ANSI/EIA-709.x

EIA-852
SERCOS Interface drive engineering IEC 61491/EN 61491

SafetyBUS machine safety not standardized

Table 2.3: Common fieldbus systems

2.6.1.2 Intentions for the development of fieldbusses

Fieldbusses have also been developed to replace the existing 4-20mA standard for ana-
log data transmission. In the automotive industry for example the number of devices
installed into a car increased, many cables (up to 2 kilometers per car) where necessary
for interconnection. This led to the development of fieldbusses.

2.6.1.3 Requirements

• Real-Time capabilities: data transmission has to be completed within a prede-
fined time period. The controlled process establishes rules regarding the timing
requirements.

• Requirements regarding the physical layer: fieldbusses are usually deployed in
an industrial environment. Here extreme conditions occur, such as electrical and
magnetic interference, vibrations, heat, low temperatures, moistness, UV-rays
and electro-magnetical fields near welding machines and huge engines. The
physical layer involves cabling and plug standards.

• On the second layer, media-access is regulated. Especially when packets hold
small amounts of data in the dimension of some bits, transmitted packets have a
size of some bytes. Usually 75% of transported data originate from cyclic trans-
mission (polling, as described in 2.4.3.1), the rest (25%) comes from random
events. Framing (packing bits into groups of predifined size), error detection
and error prevention also occur on layer 2. The latter is important in fields with
extreme conditions (as described above in the requirements on layer 1).

• Devices connected to fieldbusses have to be interoperable: this goal can be
reached with standards with which the device have to comply. As well soft-
ware as hardware for industrial communications is standardized. Therefore it
is possible to combine and exchange devices which have been manufactured by
different vendors

• The possibility for diagnosis: early error detection and immediate support in
case of a failure are often required when gaining high manufacturing quantities

2.7. CLASSIFICATION OF REQUIREMENTS 25

• Meeting international guiding principles: protecting the environment in general,
e.g. the EMC-compatibility

These requirements have been taken from [WB05, cmp. p. 273] and [Kut02, cmp. p.
21].

2.6.2 Ethernet

The main motivation for using ethernet for real-time purposes arose because devices
are wide spread and generally cheap because of the big competition between manufac-
turers. The ethernet standard (802.3 and successors) is freely available. Licence fees
are comparatively cheap when compared to that of fieldbusses. As a result internet
technologies such as the web-technology (the HTTP in general), file transfers based
on the FTP and electronic mail, which is based on the SMTP , can now be used easily
in industrial environments.

2.7 Classification of requirements

A real-time system consists of hard- and software components. These components
gather and process internal and external data and events. The timing behavior of such
systems depends on all layers it consists of. Figure 2.21 shows a first simplified model
which is accurately enough for demonstration of the problem domain. Hard real-time
communications can only be achieved when all layers of this model are real-time ca-
pable [WB05, p. 130].

Real-Time Ethernet
Requirements

Hardware-Requirements

Software-Requirements

Network-Hardware Computer-Hardware

The Central Processing Unit

The Process Scheduler Interrupt Handling

Memory Addressing

Transit Elements

Transceivers

Device Drivers

Network-Access

WCET and BCET Calculations Interrupt Handling

Figure 2.21: The real-time ethernet requirements model

2.8 Hardware requirements

2.8.1 The Central Processing Unit

“The processor controlls the operation of the computer system and is used to do the
data processing. If there is only one processor available it is often called central unit
or central processing unit (CPU).” [Sta03, p. 25]

2.8. HARDWARE REQUIREMENTS 26

Main MemoryCentral Processing Unit

I/O-Module
Data

Command

Command
Command

Command

Data
Data

...

...

......
Buffer

Figure 2.22: The main components of a computer system [Sta03, cmp. p. 26]

Figure 2.22 shows in a very simplified fashion the main parts of a computer system.
It also shows different memory technologies working together. Memory technologies
can be organized in a hierarchical style as shown in figure 2.23. Faster memory is
usually more expensive [SGG05, cmp. p. 9]. The Fastest memory is built directly
into the processor, the so called registers. Main memory is much slower compared to
registers. Buffering or caching means to map state of in- and outputs into a specific area
in main memory. Access to I/O -devices of the computer system is always buffered, to
gain multi-tasking abilities. Parts of memory with lower speed is often cached in faster
memory due to response-times improvements. This leads to unpredictable execution
times of tasks as it is very difficult to determine whether the requested data can be
found in the cache or whether it has to be requested directly in slower memory. The
former is called “Cache-Hit” and the latter is called “Cache-Miss”.

registers

cache

main memory

hard disc / network access

Figure 2.23: Storage-device hierarchy [SGG05, cmp. p. 9]

Another reason for unpredictable execution times comes from improvements in pro-
cessor technology as described in [WB05, cmp. pp. 145]:

• Caching: access to slower technologies can be boosted when parts of already
processed data gets stored in fast memory. This can be seen as a work-around for
the “von-Neumann-bottleneck” which is an alternative name for the hierarchical
organization of memory.

• Pipelining: means to fractionalize complex execution commandos into simpler

2.8. HARDWARE REQUIREMENTS 27

ones. These simple commandos can be processed by the in a parallel fashion.
E.g. fetching the commando, decoding the commando, fetching the operators
for the commando, executing the commando and storing the results can be pro-
cessed like automotive parts on an assembly line.

• Speculative execution: if the result of a jump condition is not available in due
time, the processor guesses how to proceed. Currently the probability for correct
decisions is approximately 90%. This goal is reached when the results of the
estimation are based on former decisions.

BCET and WCET is strongly related to the technologies mentioned above. The
worst case for the execution of a program or a part of it is called “Worst Case Execution
Time” (WCET). This factor is important for real-time systems as it determines the
capabilities to meet the requirements for accurate timing. A similar factor is the “Best
Case Execution Time” (BCET) which is a quantum for the fastest execution time that
can be reached with available hardware.

With technologies (caching, pipelining, speculation) as mentioned above it is difficult
to determine real-time capabilities because BCET and WCET differ significantly. The
more BCET and WCET are similar, the more predictable is the timing behavior of a
central processing unit.

More information on this topic can be found in [Jak], [Mül] and [Mue00].

2.8.1.1 Interrupt Handling

Interrupts can be understood as internal or external events to which a computer system
has to respond to. Internal events may be a program which executes a division by zero
and external events may be interrupts of external peripherals such as A/D-converters.
How these events are handled is an important factor in real-time systems because they
can happen coincidentally. Further interrupts can be divided into hard- and software
(see 2.9.2) interrupts.

[WB05, cmp. p. 137] mentions three typical possibilities for reacting on interrupts:

• current work is aborted because of a critical event to which the processor has to
respond to. After suspension an error processing program gets executed

• current work is suspended and another job gets processed. This usually happens
if an events with higher priority than the currently processed program occurs.
After the new job has been processed the suspended job is put into run state
again.

• current work is not affected by the event, it is therefore not suspended. The
interrupt which occurred was of less priority than the currently executed program
and gets processed afterwards.

[Abb06, cmp. p. 144] explains how external interrupts get processed in hardware on
the x86 platform (this is depicted in figure 2.24). The device tagged as “8259” is the

2.8. HARDWARE REQUIREMENTS 28

80x868259

Peripheral

...
Int 0

Int 7

IRQ

IAK

DB0:7

Figure 2.24: Interrupt handling hardware

so called “interrupt controller”. In case an interrupt occurs (on interrupt lines INT0
. . . INT7) it is displayed to the processor (80x86) on the IRQ line. The processor then
responds to this signal on the IAK line. After that the interrupt controller places the
interrupt vector number on the data bus. The interrupt vector number can be under-
stood as an address offset in a table[SGG05, cmp. p. 501]. This offset points to an ISR
which in turn can be understood as a small function that is called upon the event of a
specific interrupt.

The 8259 can be programmed and therfore it allows to prioritize interrupts. A 8259
can handle up to 8 interrupts and newer PCs have two of them built in. So they are
able to handle up to 16 different interrupt requests.

As interrupts are unpredictable events the behavior of how the system responds to them
is an important factor influencing the real-time capabilities. On the x86 platform inter-
rupts can be disabled via Clear Interrupts (CLI) and Set Interrupts (STI) instructions.
[Abb06, cmp. p. 16] states that using these statements can be as dangerous as using
go tos and global variables.

2.8.2 Communication Elements

2.8.2.1 Hubs

As mentioned in 2.5.4.1, hubs or multi-port repeaters cause a half-duplex network.
Therefore it is possible for collisions to occur. [LH04, cmp. p. 1] states that there are
three approaches for bus-based real-time ethernet:

• token-based medium access (1) and time-slot based (2) protocols are used by
cooperating nodes to avoid collisions and to restrain bandwidth limits allocated
to the participating nodes in a network.

• (3) statistical approaches which typically only control bandwidth allocation.
With these approaches CPU load can be kept lower than with the technology
mentioned above. Results using this approach are usually less accurate than
deterministic approaches. Thus they can only be used in scenarios where soft
real-time behavior is a requirement.

2.8.2.2 Switches and Bridges

Using switches and/or bridges only avoids collisions. A switched network is full-
duplex capable. Since all nodes in a network have equal rights when accessing the

2.8. HARDWARE REQUIREMENTS 29

network, there are still factors which lead to scenarios with unpredictable timing be-
havior.

[oEI04, cmp. p. 38] describes switch and bridge operation in general. [LH04, cmp.
p. 2] mentions the basic elements of a switch. Figure 2.25 shows how they are related
to each other. Tyipcally a switch port consists of a transmit and/or a receive queue
and two channels - transmit (TX) and receive (RX) - which enable the switch for full-
duplex transmission. Logics are implemented in the switch fabric.

switch fabric

transmit queue

transmit queue

transmit queue

transmit queue

shared
memory
pool

TX RX

RX

TX

RX TX

TX

RX

switch port

Figure 2.25: Basic elements of an output-queueing switch [LH04, cmp. p. 2]

Switch fabric The logic of the switch which is implemented inside the so called
“switch fabric”. When receiving a frame the logic determines the transmit port.
[Lim01] defines switching fabric as “the combination of hardware and software that
moves data coming in to a network node out by the correct port (door) to the next
node in the network. The term suggests that the near synonym, switch, tends to make
switching seem like a simple hardware function. Switching fabric includes the switch-
ing units (individual boxes) in a node, the integrated circuits that they contain, and
the programming that allows switching paths to be controlled. The switching fabric is
independent of the bus technology and infrastructure used to move data between nodes
and also separate from the router. The term is sometimes used to mean collectively all
switching hardware and software in a network.”

Before the development of switch fabrics bus structures dominated the market. These
bus structures had the limitation that it was only possible to transmit one packet at a
time. To overcome this situation, multi-port shared memory systems had been devel-
oped in the late 1980s. But this was only partially a solution as shared memory is both

2.8. HARDWARE REQUIREMENTS 30

difficult and expensive to develop. In the 1990s serial point-to-point backplanes with
fast transmission frequency became popular [Sma03, cmp. p. 2].

A switch fabric overcomes the limitations of the bus architecture: operating frequency,
signal propagation delay (limits the physical distance a bus can span) and electrical
loading (limits the number of devices which can be connected). [Sma03, p. 2.] states
that “all switch fabrics are not equal, they generally provide both the power and flex-
ibility needed to build cutting-edge communications equipment and offer a degree of
scalability and reliability”. Further it states that nodes of a network are connected
through a data path which leads through the switch fabric. When implemented as
point-to-point links, a single end-point failure does not affect the rest of the system.
There are three basic topologies:

• Ring topology: single point of failure topology with the advantage of easy de-
sign and lack of data backlogs (bottlenecks)

• Star topology: lower bandwidth than the mesh topology and the possibility of
bottlenecks, traffic is easier to control here because it originates from the hub of
the star

• Mesh topology: all nodes are connected to each other, so it is equala peer-to-peer
system

Queuing engine Switches operate as statistical multiplexers with which it is not pos-
sible to predict when packets arrive at the input ports. If more then one packet arrives
for an output port, it has to be stored in the switch. Two approaches for packet buffer
placement exist: buffering incoming packets and buffering outgoing packets. The for-
mer has the disadvantage that packets which could be mediated to a free output port
have to wait for packets which are delayed because of a occupied input or output port
[Jas02, cmp. p. 69].

[WB05, cmp. p. 262] mentions two different approaches for forwarding frames:

• Cut-Through: a received frame gets analyzed during the reception. This im-
proves latency and response time for real-time applications.

• Store-and-Forward: a frame is stored as whole in the switch’s memory before
decisions are met. This is generally slower than the cut-through method.

[Jas02, cmp. p 69] mentions that only successfully received packets may be forwarded.
Thus the “cut-through” approach does not comply with the standard. Further the pub-
lication exemplifies the following queuing algorithms as service disciplines in a net-
working device:

• First Come First Serve (FCFS): Packets get processed in the order in which they
arrive at the receiving port. The maximum amount of time it takes to transmit a
packet is the time to transmit the full queue.

2.9. SOFTWARE REQUIREMENTS 31

• Priority Queuing: Packets which have been assigned higher priority get pro-
cessed before packets with lower priority. Within a priority class packets get
processed in FCFS order.

• Fair Queuing: Requirements for minimal guaranteed bandwidth can be met us-
ing this approach. Available bandwidth is assigned to specific traffic classes
and queues get processed in cyclic order. A “Credit Counter” is assigned to
each queue. This counter gets decremented with each sent packet. If the credit
counter reaches a specific value, no further processing of the queue happens in
the current cycle.

2.8.2.3 Transceivers

The word transceiver is a combination of the two words “transmitter” and “receiver”.
In simple words it refers to the bitstream sending entity on network interface cards. On
receipt of a packet, an interrupt is activated which in turn causes an Interrupt Service
Routine (ISR) to be executed. This ISR fetches the received message out of buffer
memory. See section 2.8.1.1 for more information on how hardware-interrupts are
handled.

2.9 Software requirements

Real-time operating systems have to meet additional requirements when compared to
non-real-time operating systems. These requirements are mentioned in [Sta03, cmp.
p. 520]:

• determinism: operations have to be executed at predefined points in time or
within specific periods of time. This is especially not the case if several pro-
cesses share ressources and computing time.

• responsiveness: describes the time span between the detection of an interrupt
and the reaction upon this event. This is the sum of the time to detect an interrupt,
to start the ISR, to execute the ISR and the behavior of convoluted interrupts
(interrupts that occur during interrupt handling).

• user control: the user must be able to assign task priorities with a finer granular-
ity as in common desktop operating systems. Further it is necessary to define if
paging in general or suspension of processes is allowed.

• reliability: failures in desktop operating systems are often eliminated through
a system reset. This is not possible with real-time operating systems. Further,
in case of a defect processor, the system must still meet the requirements for
accurate timing. A loss of performance is unportable.

• fail-soft operation: this term describes the behavior of the system in case of a
defect. Real-time operating systems try to offer as much functionality as possi-
ble. The behavior of a typical (desktop) UNIX system is to write error messages
to the console, dump memory to the harddisk and shut down immediately.

2.9. SOFTWARE REQUIREMENTS 32

Therefore a real-time operating system usually has the following characteristics [SGG05,
cmp. p. 700]:

• preemptive, priority-based scheduling: priority is assigned to processes based on
their importance. More important tasks are assigned higher priorities than those
deemed less important. Preemption means that processes can be interrupted
during execution because a more important process has become available.

• preemptive kernel: these kernels2 allow the preemptive - in other words - the
immediate scheduling of a process or task running in kernel mode. Preemptive
kernels are mandatory for hard real-time systems because real-time tasks might
have to wait an arbitrarily long period of time while another process was active
in the kernel.

• minimized latency: interrupts may occur in hardware (see 2.8.1.1) as well as in
software (see 2.9.2). The system has to respond to events (interrupts) as fast as
possible. Requirements differ in specific applications, so e.g. anti-lock brakes
require response times of a few milliseconds and radar controllers for airliners
require response times of several seconds.

• networking support: this depends if the system has to be interconnected to other
devices. Further there is a distinction if the network to which the system is
connected has to be real-time capable. If it has to be real-time capable, the
network API is usually implemented on top of the kernel-layer of the operating
system.

The remaining part of this chapter describes some of the facts mentioned here in more
detail.

2.9.1 The role of the process scheduler

“Many commerical operating systems - as well as Linux - provide soft real-time sup-
port.” [SGG05, p. 696]. The condition for this statement is that critical real-time tasks
have to receive priority over other tasks and have to retain that priority until they com-
plete. This can be explained by examining how the scheduler handles interrupts during
the execution of a task.

2.9.1.1 Preemptive scheduling

Preemptive scheduling enables the suspension of lower priority tasks when a task with
higher priority has become available. Figure 2.26 shows a task with higher priority
waiting (blocking) for an event. This event is signalled by an interrupt which puts this
task into the ready state. At the end of the ISR the lower priority task is suspended
until the higher priority task is either finished or blocked again.

2the central component of most computer systems[Wik07i]

2.9. SOFTWARE REQUIREMENTS 33

task

time

ISR

High Priority Task

Low Priority Task

interrupt

ready

Figure 2.26: Preemptive scheduling [Abb06, p. 150]

Nonpreempetive scheduling requires all tasks being “good citizens” by voluntarily
giving up the processor to be sure all tasks get a chance [Abb06, p. 151]. Figure 2.27
shows that the lower priority task still gets executed after the ISR which puts the higher
priority task into the ready state. The higher priority task does not get executed until
the lower priority task yields the processor or until it is blocked.

task

time

ISR

High Priority Task

Low Priority Task

interrupt

ready

blocks

Figure 2.27: Nonpreemptive scheduling [Abb06, p. 151]

[Abb06, cmp. p. 151] further mentions that early versions (the ones that were based
on the DOS-kernel) of Windows were nonpreemptive, thus multi-tasking abilities were
very limited. Standard Linux is preemptive although it is not considered to be real-time
capable due to long periods during which preemption is disabled.

2.9.2 Interrupt handling in real-time operating systems

Figure 2.28 has been taken from [SGG05, p. 702] and describes how interrupt latency
is formed. The term interrupt latency can be understood as the period of time from the
arrival of an interrupt at the cpu until the start of the execution of the interrupt service
routine (ISR). Thus interrupt latency is largely hardware dependend because signals
have to get over peripheral busses such as PCI or VME busses.
In the case an interrupt occurs the operating system has to determine the type of inter-
rupt that has been reported. After that it must save the state of the currently executed
task. This is also called “context switching”.

Interrupts have to be disabled in some cases. For example updating the internal kernel
data structures requires interrupts to be disabled. Disabled interrupts contribute to
an increasing interrupt latency. Especially in hard real-time systems interrupt latency
has not only to be kept small, it also has to be bounded to meet the requirements for
deterministic behavior of the whole system.

[Abb06, cmp. p. 170] mentions two technologies which can be used to gain real-time
behavior concerning interrupt handling:

2.9. SOFTWARE REQUIREMENTS 34

running task

interrupt

ISR

time

determine
interrupt
type

context
switch

interrupt latency

Figure 2.28: Interrupt latency

2.9.2.1 Preemption improvement

Preemption improvement aims to provide a scheduler that is able to guarantee a fixed
overhead for a context switch with real-time tasks. This reduces interrupt latency
drastically (e.g. from 60 ms down to 1 to 2 ms with a real-time Linux kernel). A
further advantage is that real-time tasks can run in user space.

Preemption improvement alone does not make an operating system real-time capable,
but it can be seen as a requirement for reducing response times in general.

2.9.2.2 Interrupt abstraction

Interrupt abstraction adds an additional abstraction layer between the hardware and an
operating system’s kernel. Thus the operating system has no direct control over the
activation or deactivation of interrupts. Further the operating system is executed as a
process that is under maintenance of the interrupt abstraction layer (which can also be
seen as a real-time kernel). This shown in figure 2.29.

Process Process

Operating System (Kernel) RT Task RT Task

Real-Time kernel

RT FIFO

Hardware
Interrupts

”Software”
Interrupts

RT Scheduling

Non-RT scheduling

Figure 2.29: Interrupt abstraction [Wik07o, cmp.]

The technology of abstraction interrupts had been patented. This led to the devel-
opment of a nano kernel architecture in conjunction with the open-source operating
system Linux. The project has been called ADEOS and is used to share hardware in-
terrupts between different operating system instances, so called domains. Interrupts
are piped through all OS domains. An OS domain can handle an interrupt then or ig-
nore it. The order in the pipeline defines which domain gets occurred interrupts first,

2.10. APPROACHES FOR REAL-TIME ETHERNET 35

thus more important systems should be placed at the beginning of the pipeline. The
Xenomai RT Linux extensions are a branch of the RTAI project. The HAL of RTAI is
replaced by ADEOS. More information on these projects is given in chapter 3.

2.9.3 Memory Addressing

[SGG05, cmp. p. 699] explains three different approaches to memory management in
real-time operating systems:

• real-addressing mode: here physical addresses equal to logical addresses. This
implies that a programmer is required to specify where in memory a program
has to be loaded. The benefit for this in turn is, that no memory calculation has
to take place, thus fast access is guaranteed.

• using a relocation register: the value of the relocation register R is added to the
logical address L. The relocation register is set to the memory location where a
program is loaded: P = L + R

• the real-time system provides full virtual memory functionality: address trans-
lation takes place via page tables and Table Lookaside Buffers (TLBs) . This
is the most complex and thus slowest approach. One advantage is that it pro-
vides memory protection between processes. Examples for this approach is the
LynxOS, OnCore Systems and the RTAI Linux extension.

2.9.4 Paging

Paging is strongly related to memory addressing in the fact that the latter enables an
application to allocate memory that does not physically exist. In most cases virtual
memory is realized as a swap file or a swap partition. As a user space program there is
nearly no chance to determine if paging is allowed with the process or not. Thus access
to memory (physical or virtual) is provided transparently. Not using virtual memory
requires enough memory to be present.

2.10 Approaches for real-time ethernet

[Kos05] mentions three approaches to gain real-time behaviour in ethernet networks.
The statistical approach has already be mentioned in 2.8.2.1 in correlation with half-
duplex ethernet networks. This section focuses on ethernet that is convenient for hard
real-time ethernet.

2.10.1 The QoS approach

This section gives a short introduction to quality of service with focus on use in an
ethernet network. To understand the correlations this approach is introduced by iden-
tifying the requirements. After that the decision which traffic has to be prioritized
is met. This is also called “classification”. Classified traffic has then to be handled
accordingly to the requirements which have been defined in the first step.

2.10. APPROACHES FOR REAL-TIME ETHERNET 36

2.10.1.1 Quality-Parameters for real-time services

[Kos05] mentions that QoS has originally been used in multimedia communications.
The transport of audio and video data requires predictable latency timing behavior.
The signal quality of transported data depends largely on packet or fragment delays
and the achievable throughput.

Further some parameters concerning the quality of service are enumerated:

• Service Availability: the time a service is available. This can be declared as a
ratio of time the service is fully functional and observation period.

• Packet Loss Rate: the number of packets or frames discarded during transmis-
sion from one node to another

• Delay, latency: the time it takes to propagate a signal through the network. This
time is composed of a variable part and a constant part. The signal propaga-
tion time and the hardware processing time can be seen as constant parameters.
Variable factors concern waiting times mainly in software such as in operating-
systems, drivers or firmware of network elements.

• Jitter: the variance of latency. This can be stated as a signed variable that is
negative if a frame arrives to early at its destination or positive in case of a late
arrival.

• Throughput: the number of bits that can be transported from one node to another
through the network

2.10.1.2 Classification of traffic

Traffic classification can be implemented on different layers of the layered network
model (see 2.4.1). On the network layer different approaches have been developed
[Kos05, cmp. p. 8]. In correlation with the Internet Protocol (IP) two major technolo-
gies arose:

Outbound Classification RFC 2205 [IET97, cmp.] and RFC 1633 [IET94, cmp.]
together describe the outbound approach with which a protocol is used to reserve re-
sources across the network before a transmission takes place. This requires that each
device on the network manages a table which holds parameters of different traffic flows
through the device.

Inbound Classification This approach is also called “DiffServ” which expands to
“Differential Services”. Each packet is marked accordingly to its priority. A node, the
packet passes, may or may not interpret the value of this mark. Inbound classification
requires therefore fewer ressources than the outbound approach. This is delineated in
RFC 2475 [IET98, cmp.].

On the data link layer especially for ethernet different approaches exist. The IEEE
802.1D and the 802.1Q standards introduced traffic classes. The standard ethernet

2.10. APPROACHES FOR REAL-TIME ETHERNET 37

frame (shown in figure 2.19) does not support these classes. It is then useful when
ports of switches are merged to so called “VLANs”. VLANs help to reduce the size of
broadcast domains because broadcast frames are only forwarded to nodes in the same
segment. Traffic between VLANs has to be routed by a layer 3 device, a router.

To be able to distinguish between the different VLANs an additional header is ap-
pended to the ethernet header in case the frame is transported from one switch to
another. This VLAN-header also contains information concerning the classification of
these frames. Priority is expressed as a value ranging from 0 to 7. Therefore it allocates
three bits of the additional VLAN-header which is two bytes long. Inter-switch trans-
mission is also called “trunking” and ethernet frames which have been expanded by
the VLAN-header are also called “tagged” frames [oEI06]. A tagged frame is shown
in figure 2.30.

Preamble
(7 octets)

Start Frame
Delimiter
(1 octet)

Destination
Address
(6 octets)

Source
Address
(6 octets)

Octets within Frames transmitted left to right

LSB

MSB

Bits within
Frame transmitted
left to right

Length/Type
(2 octets)

MAC Client Data
and/or Pad

(46-1500 octets)

Frame Check
Sequence
(4 octets)

Tag Control
Information
(2 octets)

Figure 2.30: A tagged ethernet frame [oEI06, cmp. p. 239]

Traffic classes from 0 to 7 are identified again in both the IEEE 802.1D and the 802.1Q
standard. The higher the value the higher the priority of the frame to be transported.
E.g. value 7 represents very important traffic which is used to control the network.
Priority 0 is the default value which equals to best effort traffic. Value 1 (background
transmission) and 2 (unused) represent lower priorities than the best effort serivce.

Figure 2.31 demonstrates a typical ethernet network with VLANs. VLAN1 consists
of the ports 6, 7 and 8 on switch 1 and of ports 1, 2 and 3 on switch 2. Ports 1, 2, 3
and 4 of switch 1 and ports 5 and 6 of switch 2 are assigned to VLAN2. To be able to
distinguish between the different VLANs the additional VLAN-header is added to the
ethernet frame structure. Thus frames on the trunk-line are tagged and can be assigned
a priority as described in the paragraph above. The bandwidth between the VLANs is
to be shared on a single trunk-line in this case.

Traffic that flows through a single layer 2 device such as a switch or a bridge can be
classified on all fields an ethernet frame contains. In the case of figure 2.31 this could
e.g. be traffic flowing from Node1 to Node2 of traffic from Node6 to Node7. But this is
not standardized. Therefore this approach is largely vendor specific. In this document
two approaches are described: ebtables, which is the layer 2 equivalent for iptables on
the Linux operating system, and the capabilities of a Cisco IOS running on a Catalyst
Switch.

The ebtables implementation consits of two parts. Filtering capabilities are imple-
mented inside the Linux kernel. This feature has been added to the standard Linux
kernel since version 2.6. Patches for Linux 2.4 also exist. Parameters for the catego-
rization are controlled through a user-space program called “ebtables”. Categorized

2.10. APPROACHES FOR REAL-TIME ETHERNET 38

Trunk

tagged frames

untagged frames

vlan1 vlan2vlan2 vlan1
1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

T T

Node1 Node2 Node3 Node4 Node5

Node6 Node7 Node8

Node9 Node10

Switch2Switch1

Figure 2.31: An ethernet network with VLANs

frames are distinguished from each other through marks which are interpreted by the
Linux kernel. Prioritization is then controlled with another user-space program called
“tc” which expands to “traffic control”. Listings 2.1 and 2.2 are based on the example
given in [D. 05] and show a reference of how to set up classification of frames based
on the MAC-address for prioritization with the “tc” commando.

1 e b t a b l e s −A c h a i n −d d s t−mac −j mark −−s e t−mark mark−no −−mark−t a r g e t t a r g e t

Listing 2.1: ebtables for ingress traffic

1 e b t a b l e s −A c h a i n −s s r c−mac −j mark −−s e t−mark mark−no −−mark−t a r g e t t a r g e t

Listing 2.2: ebtables for egress traffic

One rule per direction is required to be able to prioritize both ingress and egress traffic.
An example of how to use these commands is given in chapter 3.

Capabilities of a Cisco Catalyst Switch Cisco Catalyst switches support the 802.1Q
standard [Cis05, cmp. p. 1]. This standard tags frames as described above in the
“Inbound Classification” section. [Cis07c, cmp. p. 6] describes how the priority
which is to be placed into the VLAN tag of received packets is defined. This value has
to be considered during forward decisions. Listing 2.3 gives a short reference on how
to define priority on a switchport.

1 s w i t c h p o r t p r i o r i t y e x t e n d { cos v a l u e | t r u s t }

Listing 2.3: Set priority of data traffic on a Cisco switch

“cos” is a keyword in this case and value is a number from 0 to 7 conforming the
802.1P priority levels. “trust” is a Cisco specific enhancement which allows the switch
to take over the priority of an attached device (e.g. a PC or a VOIP phone).

2.10.1.3 Treatment of classified traffic

[Bei07] states that smart queuing techniques make it possible to increase performance.
Less important protocols or applications are handled with lower priority, which guar-
antees a better service quality for the more important users. The publication mentions
three ways and their differences to accomplish this:

2.10. APPROACHES FOR REAL-TIME ETHERNET 39

• Queuing happens only if the interface is busy. In other words - it only happens
when it is not possible immediately to transmit a packet over the output interface.
The simplest form of queuing is a simple FIFO queue where packets that have
been waiting the longest are transmitted first. Packets are then dropped when
the queue is full. This case has to be handled by upper layer protocols (e.g.
retransmission). Usually more sophisticated queuing mechanisms with queues
meeting complex service requirements are implemented. After categorizing a
packet it is placed into the appropriate queue. If an interface is ready to transmit
the queuing algorithm decides which packet to send first.

• Traffic shaping referes to an approach that counts all identified traffic for an in-
terface. If the counted traffic exceeds a user configurable limit (e.g. a bandwidth
threshold), additional packets are put into a queue and delayed. Thus bandwidth
gets limited to the configured amount.

• Traffic policing is similar to traffic shaping except in the point how traffic that
exceeds the limits is handled. Usually this traffic gets dropped. Another way
could be to modify the priority field (TOS) in the IP header.

[JJ01, cmp. p. 3ff] mentions that the 802.1d standard does not determine how queu-
ing has to be implemented in a switch. The publication describes three different ap-
proaches and their effects:

• First Come First Serve is an alternative name for the FIFO approach. There is
no prioritization and frames get stored in the order they arrive at the switch.

• Priority Queueing is similar to an ordinary FIFO in the fact that service within
a priority is first come, first served. Higher priority frames move ahead of lower-
priority ones. In case of priority queueing with non-preemptive service, higher
priority frames do not preempt lower-priority frames that are already in service.

• Fair Queueing is a queueing scheme that is mainly used to fulfill different la-
tency and bandwidth requirements for different applications which share the net-
work. It is possible to guarantee a fixed amount of traffic on potential congestion
points. Remaining bandwidth is used for other traffic then.

An example for fair queuing is an algorithm called “deficit round robin”. Traffic class
queues get processed in a strictly cyclic order. Each queue is assigned a “queue credit”.
This parameter determines the number of bits that may be sent in a given service cycle.
The “credit counter” is a parameter that determines the number of remaining bits in a
service cycle. Fragments are only sent if they are less or equal the size of the credit
counter. If the fragment is smaller it gets sent and the credit counter is decreased
by the size of that fragment. In the case the fragment is bigger, the queue service
terminates for the current cycle and serves the next queue in the cycle. At the begin
of a service cycle the credit counter is increased by the amount of the queue credit.
Another algorithm, the so called “stochastic fairness queueing” algorithm, is used to
gain fairness of many FIFO queues, each handling a connection.[KR05] mentions that
a hash-algorithm is used to determine in which a connection has to be placed. This
results in random queue assignment for packets which shall be transmitted.

2.10. APPROACHES FOR REAL-TIME ETHERNET 40

[KR05] mentions two implementations of algorithms for traffic limiting and shaping
that have been realized for the popular Linux operating system. Complex QoS scenar-
ios are realized with algorithms that allow organization of traffic in classes. Therefore
it is important for the implementation of a real-time network to classify traffic and then
to assign these classes criterions that affect the real-time behavior of connections.

Hierarchical Token Bucket (HTB) describes a system for organizing available band-
width in a hierarchical way. The hierarchical organization is shown in figure 2.32.

A token bucket is an analogy to a bucket with waterdrops (tokens) flowing into it.
Tokens are produced permanently. In case the bucket is full, tokens are abolished.
Three scenarios can be imagined:

• if fragments arrive as fast as the bucket “produces” tokens, they can be sent
immediately

• if fragments arrive at a faster rate they must wait until enough tokens have been
produced

• in case enough fragments have been produced, fragments may be sent as fast as
possible until all tokens have been used up (burst).

Hierarchical organization of bandwidth allocation aims to gain two targets: bandwidth
should be alloted and guaranteed to classes which have been predefined. On the other
hand unassigned bandwidth sould be available for all other classes. This is depicted in
figure 2.32. Here traffic is shared between two users (e.g. they are identified by their
MAC-address). User B is guaranteed a bandwidth of at least 50MBit/s. User A further
separates his bandwidth again into two categories. User A can transmit real-time traffic
at guaranteed 10MBit/s. If no real-time traffic is to be sent, this bandwidth can be used
for data connections. This also applies the other way round. Unused data traffic can
be used for real-time traffic.

The hierarchical token bucket algorithm is part of the vanilla Linux kernel since version
2.4.20. After compilation the module is called “sch_htb.o” (or “sch_htb.ko” in Linux
2.6).

Hierarchical Fair Service Curve (HFSC) is an algorithm that has been imple-
mented with focus on the transmission of multimedia data. For voice and video data
it is important to transport data in real-time. Bandwidth and latency are managed as
separate parameters. So the quality of a service can be imagined as a curve for which
parameters have to be defined.

Further the HFSC algorithm differentiates between real-time and a link-sharing cri-
terion. The real-time criterion is responsible to meet absolute guarantees for latency.
The link-sharing criterion on the other hand is responsible for fair distribution of band-
width between different links. In some cases it is important to break the link-sharing
criterion in the interest to fulfill the real-time criterion which requires to adhere to the
predefined latency. The differences are shown in figure 2.33 and 2.34. The piecewise

2.10. APPROACHES FOR REAL-TIME ETHERNET 41

100 MBit/s
1:

50 MBit/s
1:10

50 MBit/s
1:20

40 MBit/s
1:11

10 MBit/s
1:12

User A User B

User A, Data User A, RT-Traffic

Figure 2.32: Hierarchical Token Bucket Packet Scheduling [KR05, cmp. p. 30]

definition of a service curve requires more parameters to be defined, but as a result,
the latency for packet transmission can be minimized. Steeper service curves become
more shallow afterwards to meet link-sharing requirements.

As with the HTB algorithm, this algorithm is part of the vanilla Linux kernel since
version 2.4.20. The module is called “sch_hfsc.o” or “sch_hfsc.ko” respectively in
Linux version 2.6.

t

Amount of traffic

6ms 12ms 18ms

sent packets

Figure 2.33: Linear service curve
[KR05, cmp. p. 34]

t

Amount of traffic

3ms 9ms 15ms

sent packets

Figure 2.34: Piecewise service curve
[KR05, cmp. p. 35]

2.10.1.4 Conclusion

The Quality of Service approach allows unmodified standard protocols to be used. This
is a big advantage over the TDMA approach which cannot be implemented existing
protocols that are standardized. Further [Kos05] mentions that in [Jas02, cmp. p.] is
explained how to use ethernet with Class of Service (CoS) for real-time applications.

2.10. APPROACHES FOR REAL-TIME ETHERNET 42

Hard real-time can be reached in dependence on the used topology and requirements
to the technical process. It is possible to gain transaction times in the range of a few
milliseconds if the right topology has been chosen and the load has been configured
accordingly.

2.10.2 The TDMA approach

Time Division Multiple Access has already been explained briefly in 2.4.3.8. This
chapter shows that this concept is hard real-time capable and how it has been im-
plemented recently in the RTnet project. This project has been chosen as reference
project because it offers a mostly POSIX socket compatible interface, is under active
development, available as source code and well documented.

With TDMA in ethernet networks it is guaranteed that only one node at a time accesses
the whole network. Therefore no collisions can occur. Congestion of network traffic
is also avoided [J. 04, cmp. p. 2].

Slot

TDMA Round
Cycle of two rounds

S0 S1 S2 S3 S0 S1 S2 S3 t

Frames

Figure 2.35: TDMA cycles

Figure 2.35 is based on figure 3 of [J. 05b, cmp. p. 4] and shows a TDMA setup with
static slot allocation. Thus the period of each slot is constant over all TDMA cycles.
How much of the available time in a slot is used by a station depends on the amount of
traffic it has to convey over the network.

2.10.2.1 Synchronization in TDMA networks

Usually the TDMA approach also requires the use of a time synchronization scheme.
This can happen via self made protocols as the “rtnet” project does, but there also
exist standardized solutions. In this regard the Precission Time Protocol (PTP) should
be mentioned. It is standardized in IEEE 1588. [RDH07, cmp. p. 2] mentions that
synchronization in the range of sub-microseconds is possible. This is far more precise
than the wide spread Network Time Protocol (NTP) which is used to synchronize
clocks of computer systems. With NTP-systems the peak error may be up to 100ms
whereas with PTP systems it is 100µs. Since the PTP is used as a dedicated protocol
for synchronization only it can be seen as an outbound signalling protocol.

As mentioned above, some projects as the “rtnet” implementation of a TDMA network
follow a different way. Clock synchronization for the participating nodes in the same
segment is realized in a pluggable MAC layer which is called “RTmac”. In this case

2.10. APPROACHES FOR REAL-TIME ETHERNET 43

timing information is exchanged during a TDMA cycle which can be compared to an
inbound signalling scheme. A client starts to synchronize its clock with a calibration
request to the master. The master replies with a message that contains the request
arrival and reply departure times, both as precise as the system allows [J. 05b, cmp.
p. 4]. The slave is then able to calculate the round-trip delay. An estimation for the
medium travel time is carried out.

ttravel [s] =
1
2
∗ 1

n [1]

n [1]∑
i=1

(transmission time slave ⇒ master

+transmission time master ⇒ slave) =

=
1
2
∗ 1

n [1]

n [1]∑
i=1

(Tslave msg received [s] − Tmaster msg sent [s]

+Tmaster msg received [s] − Tmaster msg sent [s]) (2.17)

With a lowercase t referring to a time period and uppercase T identifying a specific
point in time, formula 2.17 averages round trip times of n tries. To get the time for
transfering a message from this slave to the master the round trip time is divided by 2.

To reduce the potential scheduling jitters an offset period toffset is calculated (formula
2.18). With Tsched being the time when a data transmission cycle is intended to begin,
the point in time when a specific slot starts can be calculated: Tslot. The offset period
Toffset in turn allows to improve precision of slot starting times (see Tslot in formula
2.19):

toffset [s] = Tmaster msg sent [s] + ttravel [s] − Tmaster msg received [s] (2.18)

Tslot [s] = Tsched [s] + tslot [s] − toffset [s] (2.19)

Multiple packets can be queued on a slot. Therefore it was necessary to define priorities
with which traffic gets transported. The granularity in this case is per packet. If two
packets have been scheduled on the same time slot the packet with highest priority
(priority 0) gets sent first. RTnet currently offers 31 real-time levels and one level for
non real-time traffic.

With the Time Triggered Protocol (TTP) a similar approach has been implemented.
The difference to rtnet is, that synchronization between the nodes is completely im-
plemented in hardware [Pop00, cmp. p. 16]. The network is abstracted in form of
a TTP-controller which mainly consists of a message base interface (MBI) which is
often implemented as a dual ported RAM. Thus this memory area can be accessed
through the RT-Kernel, running on the node, and the TTP-controller. Messages are
“produced” in course of the running process and the TTP-controller knows then when
a message can be released onto the bus.

2.10.2.2 Varities of TDMA

Centralized slot allocation works with a master/slave relation ship between the
nodes. The master is often referred to as “Managing Node”. It determines the time

2.10. APPROACHES FOR REAL-TIME ETHERNET 44

when each node is allowed to access the medium [J. 05b, cmp. p. 4]. Existing imple-
mentations can be distinguished based on which point in time a node is allowed by the
master to access the network:

• Polling through the managing node: [WB05, cmp. p. 304] explains that Ether-
net Powerlink depends on a single master querying all nodes in a network for
data transmissions. Thus no collisions can occur and the underlying CSMA/CD
media access needs not to be disabled. See 4.2 for further explanations.

• Assignments of time slots through the managing node: for this case the RTnet
project uses a mechanism called “RTcfg” which is implemented in an own net-
work protocol that integrates into the TDMA communication cycle. It is used
to configure both generic and service specific (concerning the RTmac media
access) parameters, as well as monitoring services. The protocol does not de-
pend on specific transmission protocol such as IPv4. It only requires support for
broadcast transmissions. [J. 05b, cmp. p. 5] mentions four tasks of RTcfg to
handle:

– Handling new nodes which join the real-time network at any time. Disci-
pline configuration data has to be distributed in this case (see below).

– Monitoring of active nodes (e.g. exchange of physical and logical ad-
dresses, comparable to what the ARP does)

– The start-up procedure has to be synchronized. The way this happens is
defined by RTcfg

– Arbitraty configuration data is exchanged without protocols such as
TFTP/FTP and their underlying TCP/IP protocols.

The parameter sets for all clients in the managed network are stored in a central
configuration server (the master). The registering sequence of a client happens
in three steps:

– First, the client receives a single packet that contains initial parameters and
data to set up a RTmac discipline. The client recognizes that the message
is directed to its physical or logical address.

– The second step is to announce the presence of the client to any other
network node. In this step address information is exchanged. This can be
compared to the ARP process in standard ethernet networks. Configuration
data can be fragmented into several frames or packets. Stage 2 is finished
after the server (master) has received an acknowledge message from the
last missing client node.

– The last step is optional and can be seen as a rendezvous point for both
server and clients to wait for all participants to complete processing the
configuration data.

During operation, clients are monitored with a heart-beat signal. In case of a
time-out a client can be declared dead, which leads to a broadcast message,
informing all other node about the absence of this node. Nodes which receive
this message remove any address of the broken client in their local tables.

2.10. APPROACHES FOR REAL-TIME ETHERNET 45

Distributed allocation is being introduced in [Pop00, cmp. p. 15] on the base of
the TTP. The document describes that each node in such a network is assigned a fixed
slot in a communication cycle. [H. 98, cmp. p. 5] explains how slots are allocated
with this approach. Each nodes contains a message descriptor list (MEDL) in its TTP-
controller. This list in turn contains the information which node is allowed to send a
message of a specific format at a particular point in time.

In a TTP network information is exchanged through two different frame types: normal
(N) frames and initialization (I) frames. Frames types are distinguished by their first
bit of their header. A TTP based system is initialized and failed nodes are reintegrated
with I-frames. The data field of an I-frame contains the state of the TTP-controller.
N-frames are used to convey data over the real-time network.

[Her95, cmp. p. 2] mentions TTP in the MARS project as a field of application. The
architecture of the MARS project is explained in [Joh93, cmp. p. 2]. It has been de-
veloped at the Technical University of Vienna aiming at management of highly critical
distributed control applications. Processing nodes must show a fail-silent behaviour
and messages are exchanged through a network with a time triggered structure.

2.10.2.3 Conclusion

One of the downsides of TDMA is, that no standard protocols can be used. It requires
the networking stack of used operating systems to be modified by all means. The point
in time, when a packet or a frame enters the network is essential because both colli-
sions (in half-duplex networks) and traffic congestion (in both half- and full-duplex
networks) has to be avoided. Further it may happen that bandwidth, which could have
been used for best-effort traffic is wasted due to a bad scheduling scheme [Kos05, cmp.
p. 15]. This can partially be avoided in case dynamic slot allocation is used.

The advantage of TDMA media access is that determinism can be gained easily. Com-
pared to the QoS approach there are fewer factors that influence the real-time behavior
of the whole system.

2.10.3 The Token-Passing approach

[Kos05, cmp. p. 15] describes that Token-Passing is related to the TDMA approach in
the point, that a transmission happens in time slots. Synchronization of nodes in such
a network is not necessary as media-access is regulated through a so called “Token”.
This token is a data packet that is handed from node to node in a cyclic fashion. The
owner of the token is allowed to place data onto the bus.

[Tzi99] mentions an academic approach to real-time ethernet which is based on token-
passing media-access technology. As with RTnet it is an academical project which
aims at using standard ethernet hardware for implementing a real-time network. In
other words it is a software-only solution which can be understood as an additional
layer above the CSMA/CD media-access scheme. It also offers a industry-standard
conforming socket interface. Concrete implementations exist for FreeBSD, Linux and
DOS operating systems.

2.10. APPROACHES FOR REAL-TIME ETHERNET 46

Real-Time Ethernet (RETHER) connections are unidirectional and have to be estab-
lished before data can be transmitted. After the establishment standard send() and
recv() system calls can be used. Originally the project has been designed to work in
single-segment networks. Extensions lead to the support for switched ethernet net-
works. Thus it is possible to operate a multi-segment network. Nodes between two or
more segments act as gateways. These gateways act as sender on one segment and as
a receiver on the other because of the unidirectional nature of connections.

2.10.3.1 Conclusion

The Token-Passing approach has not been chosen by any of the wide spread industrial
ethernet solutions. The RETHER project has not been modified since many years.
The latest implementation has been developed for FreeBSD 2.1. Therefore it is only
mentioned here as a supplement to the QoS and the TDMA approach.

Chapter 3

Validation of real-time
timing-behavior

3.1 Introduction

This chapter describes the concrete implementation of a real-time ethernet network.
The experiment was used to compare two different approaches to real-time behavior:

• Ethernet-Hardware with tdma media-access (figure 3.1)

• Ethernet and QoS (figure 3.2)

The latter has been the prefered way to implement real-time networks [Kut02, cmp. p.
74].
The main purpose of the experiment was to show how to apply the time/utility func-
tions which have been stated in 2.3.1.1.

3.1.1 The arrangement

Three computers have been connected through an ethernet switch with ethernet cables
(see figure 3.3; only the master and one slave node is shown for simplicity - the other
slave node is connected in the same way as the shown one). One of these computers
acts both as communication master and sink. The other computers act as source and
send messages towards the sink which in turn changes the state of the parallel data-port
pins based on the messages it received from these client nodes. Required parallport
pins are connected to the persistence oscilloscope through a two-wire cable. Thus
port-changes can be recorded. Gathered data is then transmitted to the management
node through a RS232 cable for further investigation and statistical analysis.

3.2 Evaluation of the real-time communication system

In this document the evaluation of real-time communication systems is considered to
be accomplished in three major steps:

• traffic generation

3.2. EVALUATION OF THE REAL-TIME COMMUNICATION SYSTEM 48

Slave

MasterSlave

Switch

Collision Domain

Comm. Path 1

Comm. Path 2

Figure 3.1: Set-up of the real-time TDMA experiment

• traffic accounting

• analysis of gathered data

3.2.1 Traffic generation

For the evaluation of real-time data transmission, traffic should be generated. The
following approaches have been considered:

• generating packets from user-space in a non real-time operating system

• generating packets from a non real-time, single tasking operating system with
busy waiting

• generating packets form either user- or kernel-space with a real-time operating
system

Off-the-shelf operating systems have limited support for generating traffic at a constant
rate in a user-space process. This can be reasoned in schedulers which interrupt long
lasting processes. In preemptive operating systems processes get interrupted due to
preserve processing time for other processes and threads [Jos05, cmp. p. 33]. Thus
the packet generation by user-space processes would result in frequently packet bursts

3.2. EVALUATION OF THE REAL-TIME COMMUNICATION SYSTEM 49

Cisco Catalyst
Switch

Fa 0/0

Fa 0/1

Fa 0/2

br0

Collision Domain

QoS enabled
Interfaces

Peer 1

Peer 2

Peer 3

Comm. Path 1 (high Priority)

Comm. Path 2 (low Priority)

Figure 3.2: Set-up of the QoS experiment

which are interrupted and triggered by the process scheduler. In some cases this is
desireable as it behaves like a real coincidentally occurring data transmission. This
document focuses on packet generation at a constant rate for all real-time approaches
in user-space because of better comparability.

The correlation between packets sent on the source and received on the sink would
require an additional mechanism which assures that packets are accounted correctly.
This issue can be traced back to the unreliable nature of the UDP protocol [Hei02, cmp.
p. 332] with which higher layer protocols are required to initiate a retransmission of
lost packets.

The parallel port can be used for measurements of timing-behavior because of its low
latency [J. 03, cmp. p. 1]. This requires direct access to the hardware which is usually
achieved with low level port input and output calls [cap06, cmp.]. In the Linux operat-
ing system this is intended for kernel internal use. Additionally it is only available to
specific hardware such as the wide-spread PC x86 architecture [Fre95, outb(2)].

If using these system calls from user-space is undesirable, a user-space parallel port
device driver has been implemented. It allows modification of the port pins as unpriv-
ileged user via ioctl() (see [Fre95, ioctl(2)]) calls which in turn do the low level
port access [Tim00]. To investigate the timing-behaviour a device with a common
time-base for its inputs is desireable. Thus a persistence oscilloscope has been used.
This also allows later examination of gathered data.

3.2. EVALUATION OF THE REAL-TIME COMMUNICATION SYSTEM 50

Ethernet-Switch

Persistence Oscilloscope

RS-232 Port Multiplexer

Management Station

Master-Node Slave-Node
Ethernet Cable

Two-Wire Cable

RS232 Cable

Figure 3.3: The arrangement for the experiment

Another approach would be to measure latency based on time stamps which are placed
into sent data. Measuring latency on two devices would require to synchronize them
because latency is calculated as a difference and points in time are absolute time
stamps. Synchronization can be disregarded when measuring the round trip time. This
approach has been chosen in [Sch06, cmp.]. In this case measurements regarding the
transmission and reception of data are conducted on the same device. Timepoints are
then based on the same timebase, and as such it is shook out. This correlation is shown
in formula 3.1.

tRTT [s] = Tback [s] − Tbase [s] = (Tbase [s] + tforth [s] + tback [s])− Tbase [s]

= tforth [s] + tback [s] (3.1)

Using the parallel port as a display for events has its limitations. It is difficult to narrow
down the results of measured data. If, for example, the parallel port state has simply
been bound to interrupts of a network interface card, with a change of the signal gage it
is not possible based on the changing signal level to determine what caused this event.
The interrupt could eventually be triggered by either a received packet or an application
which initiated a data transmission. This circumstance has then to be investigated by
the interrupt service routine [J. 05a, cmp. p. 269]. A filter which changes the ports
state only on a specific event could be implemented in software. This adds latency

3.2. EVALUATION OF THE REAL-TIME COMMUNICATION SYSTEM 51

time

Tbase

0

Tforth

Tback

tRTT

t back

t forth

Figure 3.4: Calculating the round-trip time

(e.g. from the operating systems scheduler if it has been implemented in user-space)
to the results. These parameters have been explained in 2.9.1.

3.2.2 Traffic accounting

In this document traffic should be measured using a persistence oscilloscope. Thus it
is necessary to provide an interface between the nodes which participate in commu-
nication and the oscilloscope. As described in 3.2.1 the parallel port can be used to
signal certain events in the communication structure.

Two approaches for determining the points in time of events have been considered:

3.2.2.1 Implementation of an interrupt service routine

Interrupt service routines1 are called upon the event of a hardware interrupt [J. 05a,
cmp. p. 258]. Interrupt handlers run at interrupt time. In e.g. Linux this results
in further restrictions which forbid anything that would sleep, lock a semaphore or
allocate memory except in one specific way (using the GFP_ATOMIC macro).

The interrupt service routine does not handle the interrupt itself but changes the state
of the parallel port which can then be measured using the oscilloscope.

1ISR, sometimes also referred to as “interrupt handler”

3.3. PRELIMINARIES 52

3.2.2.2 Implementation of a client-server architecture

The second attempt comprises all parts of the real-time network as described in section
2.7 and consists of two programs: a server and a client application. The client appli-
cation sends UDP packets towards the server. With each sent UDP packet the state of
a parallel port pin of the client computer changes. On the server side each received
packet containing predefined data triggers the state of the parallel port at the server
computer to change its state. Thus an oscilloscope which has a common time-base for
at least two of its inputs can be used to determine the time period (= latency) between
these two events.

In other words this approach enables to measure the latency between the notification
and the processing of a specific event in an automation network.

3.2.3 Analysis of gathered data

After gathering the data it has to be conveyed from the measurement device to the man-
agement station. Modern persistence oscilloscopes often offer serial (RS232, USB) or
parallel (IEEE 1284) interfaces for this purpose. On the computer side a management
application takes over the receiving task.

Gathered data has to be prepared into a format which statistical applications can im-
port. Imported data is then fitted to a special distribution model. This allowes to make
statistical estimations [Lot01, cmp. pp. 313] with a predictable probability of correct-
ness [Lot01, cmp. pp. 598]. The intention to make these statistical estimations is to
predict behavior of the communication system with changed parameters.

3.3 Preliminaries

3.3.1 Used Hardware

3.3.1.1 Computer hardware

Developed software has been tested mainly on off the shelf hardware. Only x86 based
processors have been used. This decision has been met to prove that it is possible to
gain real-time capabilities even on very cheap and wide spread hardware. The follow-
ing systems have been set up:

• System 1 (Master): AMD K6-2 with 300 MHz and 128 MBs of RAM

• System 2 (Slave): Intel Celeron with 433 MHz and 64 MBs of RAM

• System 3 (Slave): AMD Geode with 133 MHz and 32 MBs of RAM

3.3.1.2 Networking hardware

• Network interfaces cards (NICs): Realtek 8139C and Realtek 8139D based in-
terface cards of different vendors for the PCI bus

3.3. PRELIMINARIES 53

• Switch: Surecom EP-808X-R: 8-Port 100/10M N-Way Mini Switch (RTnet ex-
periment)

• Switch: Cisco 2950 Series “IOS (tm) C2950 Software (C2950-I6Q4L2-M), Ver-
sion 12.1(22)EA5, RELEASE SOFTWARE (fc1)” (QoS experiment)

3.3.1.3 Supplementary tools

• Oscilloscope: Tektronix TDS 220 persistence oscilloscope equipped with an
extension module with serial (RS232) and parallel (IEEE1284) interfaces for
data exchange with the management station

3.3.2 Software used in the experiment

The focus has been held on open-source software since it is possible to see how a par-
ticular technology has been implemented. Further it is possible to make modifications
such as the insertion of trace points (e.g. simple printf() statements).

3.3.2.1 Operating System

Mainly the Debian GNU/Linux Etch (4.0, testing branch) distribution has been used
as base as well for the real-time operating system, as for the development platform, as
for the deployment platform. The difference lies in the modifications which have been
undertaken:

• Development platform: no major modifications, only the (Linux) kernel has
been compiled for personal needs

• Testing platform: same software constellation as with the target (the system
where the real-time environment is to be used). A real-time kernel based on the
RTAI HAL patches (see 3.3.2.2) has been compiled and installed. Testing has
been performed in a virtual machine (see 3.3.2.3) as far as possible.

• Deployment platform: same as the development platform

3.3.2.2 Real-Time extensions for Linux

During implementation of the real-time distribution the choice between the RTAI and
Xenomai Linux extension had to be met.

The Xenomai Real-Time framework for Linux offers support for real-time user-space
processes [S. 07, cmp. p. 2]. It is supported as backend by the RTnet project. As of
the writing of this document the project is under active development. The main reason
why Xenomai has not been chosen for this thesis was the lack of documentation.

RTAI on the other hand is the older project. Therefore more documentation is avail-
able in general. Some versions of RTAI and RTnet do not correlate well together. E.g.
the combination of RTAI 3.4 and RTnet 0.9.8 required some header files to be modi-
fied. This experiment is based on RTnet 0.9.8 and RTAI 3.5 which correlated together

3.3. PRELIMINARIES 54

without any modifications. According the information given in the Changelog2 file
RTAI 3.5 mainly differes from RTAI 3.4 in its implementation of the scheduler and
interprocess communication mechanisms. Real-time processes can be invoked from
user-space using the “lxrt” kernel module [P. 04, cmp.].

3.3.2.3 Virtualization software

For virtualization the processor emulator QEMU which is also open-source software
has been used. The purpose for virtualization in this correlation was to test if devel-
oped software works together with both the real-time kernel and the real-time libraries
which offer an interface to real-time kernel functions. With the emulator being a user-
space process its execution has the restriction to be suspended by the host’s process
scheduler. As such examining the timing-behavior was not possible in the virtual en-
vironment.

The QEMU Accelerator is an extension to QEMU which is basically a user-space
process. The accelerator is mainly a kernel driver (e.g. a kernel module with Linux)
which allowes the emulator to cooperate very fast with the operating-system kernel
(memory access, CPU access, etc.) [Fab07, cmp.].

3.3.3 Correlation of development and deployment

Software which was intended to run on the real-time platform was developed on the
host system. All the tools which are needed for development require unnecessary
ressources on the target platform. Once software has been compiled for the target
platform it was tested on a virtual machine. After passing the tests it was deployed to
the real-time platform.

3.3.4 Steps toward a real-time network

A linux system is prepared to be able to be deployed as a real-time platform. The
distribution to be deployed is based on Debian 4.0. The deployment platform is also
based on Debian GNU Linux 4.0. All binaries which are contained in the Debian pack-
ages are compiled for Intel i386 processors. Self-compiled binaries (which include the
real-time kernels) are compiled for Pentium MMX processors, since this is the greatest
common divisor in the used systems.

3.3.5 Compilation of a patched kernel

First of all we have to obtain the unmodified (vanilla) linux kernel-source. In this case
an Austrian mirror has been chosen (Listing 3.1).

1 p h y l o s : / u s r / s r c% wget ‘ ‘ h t t p : / / www. k e r n e l−inode−a t . lkams . k e r n e l . o rg / pub / l i n u x / k e r n e l / v2 . 6 / l i n u x
−2 .6 .17 . t a r . bz2 ’ ’

2 −−09:32:20−− h t t p : / / www. k e r n e l−inode−a t . lkams . k e r n e l . o rg / pub / l i n u x / k e r n e l / v2 . 6 / l i n u x −2 .6 .17 . t a r .
bz2

3 => ‘ l i n u x −2 .6 .17 . t a r . bz2 ’
4 R e s o l v i n g www. k e r n e l−inode−a t . lkams . k e r n e l . o rg . . . 8 1 . 2 2 3 . 2 0 . 1 6 7
5 C o n n e c t i n g t o www. k e r n e l−inode−a t . lkams . k e r n e l . o rg | 8 1 . 2 2 3 . 2 0 . 1 6 7 | : 8 0 . . . c o n n e c t e d .
6 HTTP r e q u e s t s e n t , a w a i t i n g r e s p o n s e . . . 200 OK
7 Length : 42 ,731 ,688 (41M) [a p p l i c a t i o n / o c t e t−s t r e a m]

2http://cvs.gna.org/cvsweb/vulcano/ChangeLog?rev=1.173;content-type=text%2Fplain;cvsroot=rtai

http://cvs.gna.org/cvsweb/vulcano/ChangeLog?rev=1.173;content-type=text%2Fplain;cvsroot=rtai

3.3. PRELIMINARIES 55

8
9 . . .

Listing 3.1: Obtaining the vanilla kernel-source

After that the decompression of the source-code some symbolic links have to be set up
(Listing 3.2)

1 p h y l o s : / u s r / s r c% t a r −x v j f l i n u x −2 .6 .17 . t a r . bz2
2 l i n u x −2 .6 .17 /
3 l i n u x −2 . 6 . 1 7 / . g i t i g n o r e
4 l i n u x −2 .6 .17 /COPYING
5 l i n u x −2 .6 .17 /CREDITS
6 l i n u x −2 .6 .17 / Documenta t ion /
7 l i n u x −2 .6 .17 / Documenta t ion /00−INDEX
8 . . .
9

10 p h y l o s : / u s r / s r c% l n −s l i n u x −2.6.17{ ,− r t a i−pent ium−mmx}

Listing 3.2: Obtaining the vanilla kernel-source

Now the source-code of RTAI can be obtained and installed (Listing 3.3).
1 p h y l o s : / u s r / l o c a l / s r c% t a r −x v j f r t a i −3.4−cv . t a r . bz2
2 r t a i −3.4−cv /
3 r t a i −3.4−cv / addons /
4 r t a i −3.4−cv / addons / comedi /
5 r t a i −3.4−cv / addons / comedi /README
6 r t a i −3.4−cv / addons / comedi / r t a i _ c o m e d i . h
7 r t a i −3.4−cv / addons / comedi / GNUmakefile . am
8 . . .

Listing 3.3: Installing the source-code of rtai

After that the kernel can be patched for the use with RTAI (Listing 3.4)
1 p h y l o s : / u s r / s r c / l i n u x% c a t / u s r / l o c a l / s r c / r t a i −3.4−cv / base / a r c h / i 386 / p a t c h e s / ha l−l i n u x −2.6.17− i386

−1.3−08. p a t c h | p a t c h −p1
2 p a t c h i n g f i l e d r i v e r s / p c i / msi . c
3 p a t c h i n g f i l e i n c l u d e / l i n u x / h a r d i r q . h
4 p a t c h i n g f i l e i n c l u d e / l i n u x / i p i p e . h
5 p a t c h i n g f i l e i n c l u d e / l i n u x / l i n k a g e . h
6 p a t c h i n g f i l e i n c l u d e / l i n u x / preempt . h
7 . . .

Listing 3.4: Patching the linux-kernel

Now the kernel can be built. In this case some debian specific tools [Ron07, cmp.]
are used. In the end there will be a debian package that can easily be installed and
removed on the target platform (Listing 3.5)

1 p h y l o s : / u s r / s r c / l i n u x% f a k e r o o t make−kpkg −−append−to−v e r s i o n −rp−r t a i−pent ium−mmx−−r e v i s i o n 2
k e r n e l _ i m a g e modules_image

Listing 3.5: Compiling the kernel with a debian tool “make-kpkg”

This results in a debian package called “linux-image-2.6.17-rp-rtai-pentium-mmx_2_i386.deb”.
It contains the linux kernel and the loadable modules. The distributed “Makefile” has
been altered to compile binaries for the i586 (Pentium) platform:

1 −−− m a k e f i l e 2007−03−21 0 8 : 2 6 : 0 1 . 0 0 0 0 0 0 0 0 0 +0100
2 +++ m a k e f i l e . rp 2007−03−21 0 8 : 2 6 : 2 0 . 0 0 0 0 0 0 0 0 0 +0100
3 @@ −49,6 +49 ,7 @@
4
5 r e c o n f i g : : c o n f i g−s c r i p t
6
7 + c o n f i g . s t a t u s : h o s t _ a l i a s := i586−pc−l i n u x−gnu
8 c o n f i g . s t a t u s : . r t a i _ c o n f i g
9 @tes t −r c o n f i g . s t a t u s && r e c f = yes | | r e c f =no ; \

10 e v a l ‘ g r ep ^CONFIG_RTAI_INSTALLDIR $ < ‘ ; \

Listing 3.6: Installing the source-code of rtai

3.3. PRELIMINARIES 56

The build directory for RTAI is then created (Listing 3.7).
1 p h y l o s : / u s r / l o c a l / s r c% mkdir r t a i −3.4−cv−b u i l d

Listing 3.7: Installing the source-code of rtai

In the build directory we can start the configuration process (Listing 3.8)
1 p h y l o s : / u s r / l o c a l / s r c / r t a i −3.4−cv−b u i l d% make −f . . / r t a i −3.4−cv / m a k e f i l e . rp menuconf ig

Listing 3.8: Configuring RTAI

Standard settings have been used. The configuration has only been modified, for the
binaries to contain debugging symbols (Listing 3.9).

1 CONFIG_RTAI_KMOD_DEBUG=y
2 CONFIG_RTAI_USER_DEBUG=y

Listing 3.9: Installing the source-code of rtai

After that the make command can be invoked:
1 p h y l o s : / u s r / l o c a l / s r c / r t a i −3.4−cv−b u i l d% make −f . . / r t a i −3.4−cv / m a k e f i l e
2 make a l l−r e c u r s i v e
3 make [1] : E n t e r i n g d i r e c t o r y ‘ / u s r / l o c a l / s r c / r t a i −3.4−cv−b u i l d ’
4 Making a l l i n base
5 make [2] : E n t e r i n g d i r e c t o r y ‘ / u s r / l o c a l / s r c / r t a i −3.4−cv−b u i l d / base ’
6 Making a l l i n i n c l u d e
7 . . .
8 p h y l o s : / u s r / l o c a l / s r c / r t a i −3.4−cv−b u i l d% make i n s t a l l

Listing 3.10: Compiling RTAI

The invokation of “make install” has been aborted at the creation of device entries in
the /dev directory. This would require root rights and is not necessary here since it is
the development platform.

3.3.6 Compilaton of RTnet

RTnet has been compiled to work together with RTAI. After downloading the package
it has been compiled (listing 3.11).

1 p h y l o s : / u s r / l o c a l / s r c% wget ‘ ‘ h t t p : / / www. r t s . uni−hannover . de / r t n e t / download / r t n e t −0 .9 .8 . t a r . bz2 ’ ’
2 −−23:51:03−− h t t p : / / www. r t s . uni−hannover . de / r t n e t / download / r t n e t −0 .9 .8 . t a r . bz2
3 => ‘ r t n e t −0 .9 .8 . t a r . bz2 ’
4 R e s o l v i n g www. r t s . uni−hannover . de . . . 1 3 0 . 7 5 . 1 3 7 . 1 4
5 C o n n e c t i n g t o www. r t s . uni−hannover . de | 1 3 0 . 7 5 . 1 3 7 . 1 4 | : 8 0 . . . c o n n e c t e d .
6 HTTP r e q u e s t s e n t , a w a i t i n g r e s p o n s e . . . 200 OK
7 Length : 897 ,736 (877K) [a p p l i c a t i o n / x−b z i p]
8
9 100%[==>] 897 ,736

121 .68K/ s ETA 00:00
10
11 2 3 : 5 1 : 1 1 (1 2 4 . 5 7 KB/ s) − ‘ r t n e t −0 .9 .8 . t a r . bz2 ’ saved [8 9 7 7 3 6 / 8 9 7 7 3 6]
12
13 p h y l o s : / u s r / l o c a l / s r c% t a r − t j f r t n e t −0 .9 .8 . t a r . bz2
14 r t n e t −0 .9 .8 /
15 r t n e t −0 .9 .8 /NEWS
16 r t n e t −0 .9 .8 /TODO
17 r t n e t −0 .9 .8 / a c l o c a l . m4
18 r t n e t −0 .9 .8 / s t a c k /
19 r t n e t −0 .9 .8 / s t a c k / i pv4 /
20 . . .
21 p h y l o s : / u s r / l o c a l / s r c% t a r −x j f r t n e t −0 .9 .8 . t a r . bz2
22 p h y l o s : / u s r / l o c a l / s r c% l n −s f r t n e t −0.9.8 r t n e t
23 p h y l o s : / u s r / l o c a l / s r c% cd r t n e t

Listing 3.11: Compilation of RTnet

The makefile had to be adapted again to meet the host-system requirements (Pentium
processor; i586 architecture) (figure 3.12).

3.3. PRELIMINARIES 57

1 p h y l o s : / u s r / l o c a l / s r c / r t n e t% d i f f −Nau m a k e f i l e { , . rp }
2 −−− m a k e f i l e 2007−03−21 0 9 : 1 6 : 4 8 . 0 0 0 0 0 0 0 0 0 +0100
3 +++ m a k e f i l e . rp 2007−03−21 0 9 : 1 6 : 5 9 . 0 0 0 0 0 0 0 0 0 +0100
4 @@ −48,6 +48 ,7 @@
5
6 r e c o n f i g : : c o n f i g−s c r i p t
7
8 + c o n f i g . s t a t u s : h o s t _ a l i a s = i586−pc−l i n u x−gnu
9 c o n f i g . s t a t u s : . r t n e t _ c o n f i g

10 @tes t −r c o n f i g . s t a t u s && r e c f = yes | | r e c f =no ; \
11 e v a l ‘ g r ep ^CONFIG_RTNET_INSTALLDIR $ < ‘ ; \

Listing 3.12: Adapting the makefile

After that the installation could be finished (listing 3.13).
1 p h y l o s : / u s r / l o c a l / s r c / r t n e t% make −f m a k e f i l e . rp menuconf ig
2 make [1] : E n t e r i n g d i r e c t o r y ‘ / u s r / l o c a l / s r c / r t n e t −0 .9 .8 / s c r i p t s / k c o n f i g ’
3 gcc −Wall −W s t r i c t−p r o t o t y p e s −O2 −fomi t−frame−p o i n t e r −DLOCALE −DCURSES_LOC= ’ ’ < n c u r s e s . h > ’ ’ −I /

u s r / l o c a l / s r c / r t n e t / s c r i p t s / k c o n f i g −c / u s r / l o c a l / s r c / r t n e t / s c r i p t s / k c o n f i g / l x d i a l o g /
c h e c k l i s t . c −o l x d i a l o g / c h e c k l i s t . o

4 . . .
5 p h y l o s : / u s r / l o c a l / s r c / r t n e t% make
6 p h y l o s : / u s r / l o c a l / s r c / r t n e t% make i n s t a l l

Listing 3.13: Finishing the installation of RTnet

3.3.7 Deploying the libraries

1 r t k 6 2 : / u s r / l o c a l / r t a i / l i b # echo " i n c l u d e / e t c / l d . so . con f . d /∗ . c o n f >> / e t c / l d . so . c o n f
2 r t k 6 2 : / u s r / l o c a l / r t a i / l i b # pwd >> / e t c / l d . so . c o n f . d / r t a i . c o n f
3 r t k 6 2 : / u s r / l o c a l / r t a i / l i b # l l / e t c / l d . so . cache [1 9 : 4 2 : 5 1 @ 07−03−15]
4 −rw−r−−r−− 1 r o o t r o o t 9373 2007−03−15 19:42 / e t c / l d . so . cache
5 r t k 6 2 : / u s r / l o c a l / r t a i / l i b # l d c o n f i g [1 9 : 4 2 : 5 6 @ 07−03−15]
6 r t k 6 2 : / u s r / l o c a l / r t a i / l i b # l l / e t c / l d . so . cache [1 9 : 4 2 : 5 8 @ 07−03−15]
7 −rw−r−−r−− 1 r o o t r o o t 9693 2007−03−15 19:42 / e t c / l d . so . cache
8 r t k 6 2 : / u s r / l o c a l / r t a i / l i b # [1 9 : 4 2 : 5 9 @ 07−03−15]

Listing 3.14: Deploying the RTAI libraries

3.3.8 Deployment of the real-time linux-distribution

Listing 3.15 shows the partitioning scheme for the real-time linux distribution. The
swap partition has been created for non real-time kernels with which paging has been
enabled. In the RTAI kernel paging has been disabled.

1 p h y l o s : /% sudo f d i s k −l / dev / sdg
2
3 Disk / dev / sdg : 4 1 . 1 GB, 41174138880 b y t e s
4 255 heads , 63 s e c t o r s / t r a c k , 5005 c y l i n d e r s
5 U n i t s = c y l i n d e r s o f 16065 ∗ 512 = 8225280 b y t e s
6
7 Device Boot S t a r t End Blocks Id System
8 / dev / sdg1 ∗ 1 4 32098+ 83 Linux
9 / dev / sdg2 5 5005 40170532+ 5 Extended

10 / dev / sdg5 5 37 265041 82 Linux swap / S o l a r i s
11 / dev / sdg6 38 675 5124703+ 83 Linux
12 / dev / sdg7 676 5005 34780693+ 83 Linux

Listing 3.15: Partition scheme for the system harddisk

The second logical partition (/dev/sdg5) is big enough (5GBs) to carry the real-time
linux image. The harddisk is connected to the deployment platform via an USB ⇐⇒
IDE adapter. In the next step the filesystem is created on this partition (Listing 3.16).

1 p h y l o s : /% su −
2 Password :
3 p h y l o s :~# mkfs −t e x t 3 −L r t n e t−l i n u x / dev / sdg6

[1 9 : 3 0 : 5 8 @ 07−01−22]

3.3. PRELIMINARIES 58

4 mke2fs 1.40−WIP (14−Nov−2006)
5 F i l e s y s t e m l a b e l = r t n e t−l i n u x
6 OS t y p e : Linux
7 Block s i z e =4096 (l o g =2)
8 Fragment s i z e =4096 (l o g =2)
9 641280 inodes , 1281175 b l o c k s

10 64058 b l o c k s (5 .00%) r e s e r v e d f o r t h e s u p e r u s e r
11 F i r s t d a t a b l o c k =0
12 Maximum f i l e s y s t e m b l o c k s =1312817152
13 40 b l o c k g r ou ps
14 32768 b l o c k s p e r group , 32768 f r a g m e n t s p e r group
15 16032 i n o d e s p e r group
16 S u p e r b l o c k backups s t o r e d on b l o c k s :
17 32768 , 98304 , 163840 , 229376 , 294912 , 819200 , 884736
18
19 W r i t i n g i n o d e t a b l e s : done
20 C r e a t i n g j o u r n a l (32768 b l o c k s) : done
21 W r i t i n g s u p e r b l o c k s and f i l e s y s t e m a c c o u n t i n g i n f o r m a t i o n : done
22
23 Th i s f i l e s y s t e m w i l l be a u t o m a t i c a l l y checked e v e r y 38 mounts o r
24 180 days , wh icheve r comes f i r s t . Use t u n e 2 f s −c o r −i t o o v e r r i d e .

Listing 3.16: Creating the filesystem

After that the system files can be copied with tar (Listing 3.17).
1 p h y l o s :~# mount / dev / sdg6 / mnt / temp
2 p h y l o s :~# l l / mnt / p o n t i s / images
3 t o t a l 88672
4 drwxrwxrwx 4 r p o i s e l u s e r s 16384 2007−01−13 11 :56 .
5 drwxrwxrwx 16 r p o i s e l u s e r s 16384 1970−01−01 01 :00 . .
6 −rwxrwxrwx 1 r p o i s e l u s e r s 3223671 2007−01−13 01 :12 a n t _ l i n u x . t a r . gz
7 drwxrwxrwx 4 r p o i s e l u s e r s 16384 2006−11−08 19 :21 cdroms
8 drwxrwxrwx 2 r p o i s e l u s e r s 16384 2006−06−21 00 :29 h a r d d i s k s
9 −rwxrwxrwx 1 r p o i s e l u s e r s 87502779 2007−01−14 16 :02 r t _ e t c h _ b a s e . t a r . bz2

10 p h y l o s :~# cd / mnt / p o n t i s / images
11 p h y l o s : / mnt / p o n t i s / images # t a r − t j f r t _ e t c h _ b a s e . t a r . bz2
12 . /
13 . / i n i t r d . img . o l d
14 . / s y s /
15 . / dev /
16 . / dev / midi1
17 . / dev / ram13
18 . / dev / smpte0
19 . / dev / urandom
20
21 . . .
22
23 p h y l o s : / mnt / p o n t i s / images # t a r −x j f r t _ e t c h _ b a s e . t a r . bz2 −C / mnt / temp

Listing 3.17: Copying the system files

The next step is to install the boot-manager “Grub” (Listing 3.18).
1 p h y l o s : / mnt / p o n t i s / images # sudo umount / mnt / temp
2 p h y l o s : / mnt / p o n t i s / images # grub
3
4 GNU GRUB v e r s i o n 0 . 9 7 (640K lower / 3072K upper memory)
5
6 [Minimal BASH−l i k e l i n e e d i t i n g i s s u p p o r t e d . For
7 t h e f i r s t word , TAB l i s t s p o s s i b l e command
8 c o m p l e t i o n s . Anywhere e l s e TAB l i s t s t h e p o s s i b l e
9 c o m p l e t i o n s o f a d e v i c e / f i l e n a m e .]

10
11 grub > r o o t (hd3 , 5)
12 grub > f i n d / boo t /
13 P o s s i b l e f i l e s a r e : i n i t r d . img−2.6.18−3−486 c o n f i g −2.6.18−3−486 c o n f i g −2.6.19.1− rp−xenomai−

pent ium−mmx System . map−2.6.18−3−486 System . map−2.6.19.1− rp−xenomai−pent ium−mmx vml inuz
14 −2.6.18−3−486 vmlinuz −2.6.19.1− rp−xenomai−pent ium−mmx grub
15 grub > s e t u p (hd3)
16 Checking i f ‘ ‘ / boo t / g rub / s t a g e 1 ’ ’ e x i s t s . . . yes
17 Checking i f ‘ ‘ / boo t / g rub / s t a g e 2 ’ ’ e x i s t s . . . yes
18 Checking i f ‘ ‘ / boo t / g rub / e 2 f s _ s t a g e 1 _ 5 ’ ’ e x i s t s . . . yes
19 Running ‘ ‘ embed / boo t / g rub / e 2 f s _ s t a g e 1 _ 5 (hd3) ’ ’ . . . 16 s e c t o r s a r e embedded .
20 s u c c e e d e d
21 Running ‘ ‘ i n s t a l l / boo t / g rub / s t a g e 1 (hd3) (hd3) 1+16 p (hd3 , 5) / boo t / g rub / s t a g e 2 / boo t / g rub / menu .

l s t ’ ’ . . . s u c c e e d e d
22 Done .
23
24 grub > q u i t

Listing 3.18: Installing the boot-manager

3.3. PRELIMINARIES 59

The “find” command has been used to see if the selected root partition (“root” com-
mand) was correct. After exeucting “setup” the MBR is manipulated so that the hard-
disk is bootable. The boot-loader and the running Linux system has been configured
to be accessable via the serial console (Listing 3.19).

1 p h y l o s : / mnt / p o n t i s / images #
2 p h y l o s : /% picocom −b 19200 / dev / t t s / 0
3 picocom v1 . 4
4
5 p o r t i s : / dev / t t s / 0
6 f l o w c o n t r o l : none
7 b a u d r a t e i s : 19200
8 p a r i t y i s : none
9 d a t a b i t s a r e : 8

10 e s c a p e i s : C−a
11 n o i n i t i s : no
12 n o r e s e t i s : no
13 no lo ck i s : no
14 send_cmd i s : a s c i i _ x f r −s −v −l 1 0
15 rece ive_cmd i s : r z −vv
16
17 T e r m i n a l r e a d y
18
19 GNU GRUB v e r s i o n 0 . 9 7 (610K lower / 158720K upper memory)
20
21 +−−−+
22 | Debian GNU/ Linux , k e r n e l 2 .6 .19 .1− rp−xenomai−pent ium−mmx |
23 | Debian GNU/ Linux , k e r n e l 2 .6 .19 .1− rp−xenomai−pent ium−mmx (s i n g l e−use r > |
24 | Debian GNU/ Linux , k e r n e l 2.6.18−3−486 |
25 | Debian GNU/ Linux , k e r n e l 2.6.18−3−486 (s i n g l e−u s e r mode) |
26 | |
27 | |
28 | |
29 | |
30 | |
31 | |
32 | |
33 | |
34 +−−−+
35 Use t h e ^ and v keys t o s e l e c t which e n t r y i s h i g h l i g h t e d .
36 P r e s s e n t e r t o boo t t h e s e l e c t e d OS , ’ e ’ t o e d i t t h e
37 commands b e f o r e b o o t i n g , o r ’ c ’ f o r a command−l i n e .

Listing 3.19: Accessing the serial console

After booting the target system, some adaptions have to be done (Listing 3.20).
1 r t k 6 2 :~# f d i s k −l / dev / hda
2
3 Disk / dev / hda : 4 1 . 1 GB, 41174138880 b y t e s
4 255 heads , 63 s e c t o r s / t r a c k , 5005 c y l i n d e r s
5 U n i t s = c y l i n d e r s o f 16065 ∗ 512 = 8225280 b y t e s
6
7 Device Boot S t a r t End Blocks Id System
8 / dev / hda1 ∗ 1 4 32098+ 83 Linux
9 / dev / hda2 5 5005 40170532+ 5 Extended

10 / dev / hda5 5 37 265041 82 Linux swap / S o l a r i s
11 / dev / hda6 38 675 5124703+ 83 Linux
12 / dev / hda7 676 5005 34780693+ 83 Linux
13 r t k 6 2 :~# mkswap / dev / hda5
14 S e t t i n g up swapspace v e r s i o n 1 , s i z e = 271396 kB
15 no l a b e l , UUID= f 2 d 3 f f a 1−8de2−46b6−ab6e−b d 0 f 7 8 d d f f 5 d
16 r t k 6 2 :~# v i / e t c / f s t a b
17
18 # UNCONFIGURED FSTAB FOR BASE SYSTEM
19 / dev / hda6 / e x t 3 noa t ime 0 0
20 / dev / hda5 none swap sw 0 0
21
22 r t k 6 2 :~# u s e r a d d −c ‘ ‘ R a i n e r P o i s e l ’ ’ −g 100 −m −s / b i n / bash r p o i s e l
23 r t k 6 2 :~# passwd r p o i s e l
24 E n t e r new UNIX password :
25 Retype new UNIX password :
26 passwd : password u p d a t e d s u c c e s s f u l l y

Listing 3.20: Final installation steps

The existing swap partition is initialized (“mkswap” command) and populated to the
system (stanza in the /etc/fstab file). The last step is to create a non-privileged user for
compilation purposes and everyday work.

3.3. PRELIMINARIES 60

3.3.9 Deployment of the real-time application framework

One of the computers, running a real-time Linux distribution has been assigned the IP
10.0.0.10. After setting up the network compiled files, which have been bundled using
the tar and the gzip commandos, can be copied over a standard ethernet/tcp-ip network
using the scp command (see listing 3.21). On the target platform the archive is then
unpacked.

1 p h y l o s : / mnt / win_d / svn / r e p o s / docs / 0 7 ws / t m 0 3 1 0 5 1 _ r p o i s e l / d i p l o m a r b e i t / s o u r c e / rt_comm% scp rt_comm .
t g z root@10 . 0 . 0 . 1 0 : / u s r / l o c a l / d i p l o m a _ t h e s i s

2 root@10 . 0 . 0 . 1 0 ’ s password :
3 rt_comm . t g z 100% 32KB 3 1 . 8KB/ s

00 :00
4 p h y l o s : / mnt / win_d / svn / r e p o s / docs / 0 7 ws / t m 0 3 1 0 5 1 _ r p o i s e l / d i p l o m a r b e i t / s o u r c e / rt_comm% s s h −l r o o t

1 0 . 0 . 0 . 1 0
5 root@10 . 0 . 0 . 1 0 ’ s password :
6 L a s t l o g i n : Mon Apr 2 2 1 : 4 8 : 1 4 2007 from 1 9 2 . 1 6 8 . 6 . 1 1 6
7 Linux r t c e l e r o n 2.6 .19 .7− rp−r t a i−pent ium−mmx #1 PREEMPT Wed Mar 21 0 8 : 0 5 : 4 4 CET 2007 i686
8
9 r t c e l e r o n :~# cd / u s r / l o c a l / d i p l o m a _ t h e s i s

10 r t c e l e r o n : / u s r / l o c a l / d i p l o m a _ t h e s i s # t a r −xvz f rt_comm . t g z
11 r t ne t _co mm _so u r ce
12 r tne t_comm_s ink
13 qos_comm_source
14 qos_comm_sink
15 r t c e l e r o n : / u s r / l o c a l / d i p l o m a _ t h e s i s # ^D
16 C o n n e c t i o n t o 1 0 . 0 . 0 . 1 0 c l o s e d .

Listing 3.21: Using scp to copy the dist-file

3.3.10 Starting RTnet

Computers running RTnet are interfaced using a serial console cable. Thus it is pos-
sible to control PCs after decoupling them from the non real-time ethernet network.
Since the serial Linux console offers only one session at a time the terminal multiplexer
“screen”3 is used. This procedure has the advantage that a application occupying a ter-
minal (with e.g. traces) can be switched into the background effectively. Listing 3.22
shows how RTnet is invoked on the target system which acts as the TDMA master.
Startup scripts for both RTAI and RTnet are provided in the source code section (A.1).
Startup of RTAI has been included into the Debian GNU/Linux System V init script
scheme of the target machines, so it gets executed on every system boot [Deb06, cmp.].
On the slaves similar commands have been executed.

1 r t k 6 2 :~# s c r e e n −S r t n e t
2 r t k 6 2 :~# / e t c / i n i t . d / r t n e t s t a r t
3
4 . . .
5
6 DHCPRELEASE on e t h 0 t o 1 9 2 . 1 6 8 . 6 . 2 5 4 p o r t 67
7 done .
8
9 ∗∗∗ RTnet 0 . 9 . 8 − b u i l t on Mar 27 2007 2 1 : 5 2 : 1 4 ∗∗∗

10
11 RTnet : i n i t i a l i s i n g r e a l−t ime n e t w o r k i n g
12 r t _ 8 1 3 9 t o o F a s t E t h e r n e t d r i v e r 0.9.24− r t 0 . 6
13 PCI : Found IRQ 11 f o r d e v i c e 0 0 0 0 : 0 0 : 1 4 . 0
14 RTnet : r e g i s t e r e d r t e t h 0
15 i n i t i a l i z i n g l o o p b a c k . . .
16 RTnet : r e g i s t e r e d r t l o
17 RTcfg : i n i t r e a l−t ime c o n f i g u r a t i o n d i s t r i b u t i o n p r o t o c o l
18 RTmac : i n i t r e a l t i m e media a c c e s s c o n t r o l
19 RTmac /TDMA: i n i t t ime d i v i s i o n m u l t i p l e a c c e s s c o n t r o l mechanism
20 Wai t ing f o r a l l s l a v e s . . .
21 r t k 6 2 :~#

Listing 3.22: Starting rtnet

3http://www.gnu.org/software/screen/

http://www.gnu.org/software/screen/

3.4. DESCRIPTION OF THE REAL-TIME NETWORK-TESTING FRAMEWORK 61

3.4 Description of the real-time network-testing framework

3.4.1 Organization of the source code

Source code which is mentioned in this section can be found in the Appendix (A.1.1).
The real-time framework is organized in a modular way. Source and sink are imple-
mented as separate programs: rt_comm_source.c (Appendix A.5) and rt_comm_sink.c
(Appendix A.6). Command-line parsing is accomplished using the getopt library in
lines 73 to 87 and lines 106 to 162 in rt_comm_source.c (Appendix A.5). System calls
regarding the timing behaviour of the application are the ones the RTAI lxrt real-time
framework offers [P. 05, cmp.]. Integration of system calls and transition aspects have
been considered as described in [P. 04, cmp.].

Networking functions are called through function pointers. This allowes the develop-
ment of backends with a defined interface. This interface is defined in the common
header file rt_comm_backend_ifc.h (Appendix A.7). A backend has therefore to im-
plement the init_backend() function in which the function pointers are initial-
ized.
The init_backend() function is called before the network functions are being
used. This is shown in line 93 of rt_comm_source.c (Appendix A.5) and line 89 in
rt_comm_sink.c (Appendix A.6).

With this approach new backends can be implemented with a C-File containing the
implementations of the function pointers and the init_backend() function. Af-
ter compilation the object file has to be linked to the resulting binary statically. The
program logic only relies on the contents of the backend_desc structure which is
initialized by the backend itself. Thus the backend can be exchanged without touching
the rest of the program logic. This has the advantage of better comparability since the
focus in which backends are used is identical among them.

The chosen approach results in a executable file for each backend. Better modulariza-
tion could have been gained with the use of dynamic libraries (e.g. shared objects on
the Linux platform and dynamic link libraries on Microsoft Windows). These libraries
allow access to functions which are determined at run time [Dav03, cmp. chapter
“Shared Libraries”]. Thus only one binary for all backends would be sufficient. Func-
tions of the backends are then loaded out of shared libraries at run-time.

3.4.2 Access to the parallel port

Access to the parallel port is accomplished with macros which have been defined in
parport.h (Appendix A.4). This header is also intended to activate and deactivate ac-
cess to the parallel port. USE_PARPORT set to 1 activates this feature, 0 (zero) de-
activates it at compile time. The port base address is hardcoded to 0x378 and since
applications are intended to be executed as user-space programs a call to iopl(2) is
necessary (see the INIT_PARPORT macro) to gain the privilege level to do so. This
requires the application to be executed with root rights. Changing the port state is done
with calls to outb(2). The TOGGLE_PIN macro is called with values from 0 to 7
mapping to the data-pins 1 to 8 of the parallel port.

3.5. RTNET - LATENCY MEASUREMENTS 62

3.4.3 The Source

The source (rt_comm_source.c, Appendix A.5) has been programmed to allow sending
of UDP-packets at a specific rate. The rate at which packets get transmitted is deter-
mined by the “lDelay” value which can be modified using the command-line parame-
ter “–tx-delay”. Lines 181 and 225 manage the activation of the RTAI hard real-time
scheduler which is necessary for some system calls such as rt_dev_connect() or
rt_send().

3.4.4 The Sink

The sink (rt_comm_sink.c, Appendix A.6) listens at the specified port for UDP-packets
(line 150 and 157). The content of these UDP packets is then investigated if it contains
the quit message (lines 165 to 169) or if the state of a specific pin of the parallel port
has to be changed (lines 171 to 179). As with the source, calls to the RTAI scheduler
are made to gain real-time timing behavior (lines 147 and 184).

3.5 RTnet - Latency Measurements

This experiment aims to acquire latency in a deterministic network. As a result it
should be possible to determine the probability to gain specific latency constraints.

3.5.1 Using TDMA networking functions

RTnet offers a similar interface to networking as the POSIX standard does [J. 05b,
cmp. p. 3]. Thus it is possible to use the same data types as with the POSIX functions.
The file rt_comm_rtnet.c shows how function pointers have been initialized to use rtnet
for data exchange. With this module all function pointers act as wrappers for RTnet
networking functions.

3.5.2 Gathering latency data

After starting all participating nodes (one master and two slaves) as described in 3.3.10
programs accomplishing communication can be started.

1 r t k 6 2 : / u s r / l o c a l / d i p l o m a _ t h e s i s # . / r t ne t_comm_s ink −−p o r t 1234
2 S t a r t i n g ha rd r e a l−t ime r e c e i v e p r o c e s s . A l l your base a r e b e l ong t o us !
3 Qu i t message r e c e i v e d , s h u t t i n g down t h e r e f o r e . For g r e a t j u s t i c e .
4
5 S t a t i s t i c s :
6 ===========
7 PIN1 : 300
8 PIN2 : 11474
9 PIN3 : 0

10 PIN4 : 0
11 PIN5 : 0
12 PIN6 : 0
13 PIN7 : 0
14 PIN8 : 0
15 1 Qu i t message r e c e i v e d .

Listing 3.23: Invoking the application on the master node

In listing 3.23 the packet sink waits for incoming UDP packets until a message con-
taining the string “42” arrives. Then a statistic is printed to see if all packets arrived at

3.5. RTNET - LATENCY MEASUREMENTS 63

their destination. On one of the client machines the source is started (listing 3.24) with
a given number of messages (300) to transmit.

1 r t c e l e r o n : / u s r / l o c a l / d i p l o m a _ t h e s i s # . / r t ne t_c omm _s ou r ce −−s e r v e r−p o r t 1234 −−s e r v e r−i p 1 0 . 0 . 0 . 1 \
2 −−message PIN1 −−t o g g l e−p i n 2 −−num−messages 300 −−num−f a i l u r e−messages 20 −−tx−d e l a y 3000000

Listing 3.24: Invoking the application on the second slave node

The second client machine is used to cause additional load during the deterministic
transmission (listing 3.25). Thus a larger number of messages to transmit is provided
(1000000) to occupy media as much and as long as possible.

1 r t g e o d e : / u s r / l o c a l / d i p l o m a _ t h e s i s # . / r t ne t_c omm _s ou r ce −−s e r v e r−p o r t 1234 −−s e r v e r−i p 1 0 . 0 . 0 . 1 \
2 −−message PIN2 −−t o g g l e−p i n 1 −−num−messages 1000000 −−num−f a i l u r e−messages 20 −−tx−d e l a y 3000000

Listing 3.25: Invoking the application on the first slave node

Figure 3.5 and 3.6 demonstrate how latency values have been gathered using the “cur-
sor” function of the persistence oscilloscope. The signal level of one of the parallel
port datapins changes with each sent or received packet. These datapins are connected
to the persistence oscilloscope: signal 1 to the communication source and signal 2 to
the sink. The communication source (signal 1) sends a specific number of packets to-
wards the communication sink (signal 2). Therefore each edge of the signal displays
either a packet which has been sent by the communication source (signal 1) or a packet
which has been received at the sink (signal 2). As such the time between transmission
and the reception of a packet (also known as latency) can be stated as the period be-
tween two edges (e.g. the period between cursor 1 and cursor 2). In this case at least
50 latency values have been taken per cycle time. In the next step these values can be
statistically evaluated.

Figure 3.5: Latency measured during a
3ms cycle

Figure 3.6: 20 sent and received mes-
sages in hard real-time mode

3.5.3 Measurement results

Statistical analysis has been performed using the statistical software project “R”4. The
accomplishment of analysis for 3000µs cycle time is presented in listings 3.26 and
3.28. These two files have been concatenated together to supply the function for other
cycle times too. Latency times for other cycle times have been acquired with tally
sheets as shown in line 3 in listing 3.27 (line 3).

4http://www.r-project.org

http://www.r-project.org

3.5. RTNET - LATENCY MEASUREMENTS 64

Latency distribution (3000us/200us)

Latency [us]

F
re

qu
en

cy
 [1

]

0 500 1000 1500 2000 2500 3000

0
10

20
30

40
50

Figure 3.7: Distribution of latencies
with RTnet at a cycle time of 3000µs

Latency distribution (2000us/100us)

Latency [us]

F
re

qu
en

cy
 [1

]

0 500 1000 1500 2000

0
5

10
20

30

Figure 3.8: Distribution of latencies
with RTnet at a cycle time of 2000µs

1 ### 3000 us c y c l e t ime , 200 us tdma o f f s e t
2 lCycleTime <−"3000"
3 l L a t e n c y <− s can (" . . / d a t a / l a t e n c y . d a t ")
4 p r i n t h i s t p d f (l L a t e n c y , p a s t e (" r t n e t _ l a t e n c y _ " , lCycleTime , " . pdf " , sep = " ") , 3 0 0 0 , 5 0 , " 3 0 0 0 " , " 2 0 0 ")

Listing 3.26: rtnet_latency_3000.R

1 ### 2000 us c y c l e t ime , 100 us tdma o f f s e t
2 lCycleTime <−"2000"
3 l L a t e n c y <− c (r e p (6 0 0 , t i m e s =8) , r e p (8 0 0 , t i m e s =8) , r e p (1 0 0 0 , t i m e s =9) , r e p (1 2 0 0 , t i m e s =16) , r e p (1 4 0 0 ,

t i m e s =22) , r e p (1 6 0 0 , t i m e s =17) , r e p (1 8 0 0 , t i m e s =12))
4 p r i n t h i s t p d f (l L a t e n c y , p a s t e (" r t n e t _ l a t e n c y _ " , lCycleTime , " . pdf " , sep = " ") , 2 0 0 0 , 3 0 , " 2 0 0 0 " , " 1 0 0 ")

Listing 3.27: rtnet_latency_2000.R

1 p r i n t h i s t p d f = f u n c t i o n (p D i s t r i b u t i o n , pFi lename , pUpXlim , pUpYlim , pCycleTime , pTDMAOffset , pBars =6 ,
pLowXlim =0 , pLowYlim =0)

2 {
3 x11 ()
4 p a r (cex = 2 . 0)
5 h i s t (p D i s t r i b u t i o n , main= p a s t e (" La tency d i s t r i b u t i o n (" , pCycleTime , " us / " , pTDMAOffset , " us) " ,

sep = " ") , c o l =" L i g h t Blue " , b r =pBars , p l o t =TRUE, x l im =c (pLowXlim , pUpXlim) , y l im =c (pLowYlim ,
pUpYlim) , x l a b =" La tency [us] " , y l a b =" Frequency [1] ")

6 p r i n t p d f (pF i l ename)
7 }
8
9 p r i n t p d f = f u n c t i o n (pF i l ename)

10 {
11 dev . copy (d e v i c e =x11)
12 dev . p r i n t (pdf , pFi lename , wid th = 1 0 . 0 , h e i g h t = 7 . 5)
13 dev . o f f (dev . p r ev ())
14 dev . o f f ()
15 }

Listing 3.28: functions.R

Further investigations have been carried out to determine if shorter cycle times lead
to distributions with more frequent latencies similar to the configured cycle time. The
distributions are shown in figures 3.7 to 3.10. The lowest configured cycle time of
400µs led to latency times of up to 800µs. As such with a cycle time of 400µs this
system is only soft real-time capable. With a cycle time of 1ms all messages have
been received on time. None of the measured latency times was longer than 1ms.

The difference between figure 3.7 and 3.8 looks like someone might expect it - With a
cycle time of 2ms the density of latencies is higher at the value of the cycle time. With
a communication cycle of 2ms packets have less time to arrive at their destination
than with 3ms. The distribution at a cycle time of 1ms shows that there is no such

3.6. QOS - LATENCY MEASUREMENTS 65

relation. Latencies are distributed uniformly again over the cycle time as was the case
with 3ms.

Latency distribution (1000us/200us)

Latency [us]

F
re

qu
en

cy
 [1

]

0 200 400 600 800 1000

0
10

20
30

40

Figure 3.9: Distribution of latencies
with RTnet at a cycle time of 1000µs

Latency distribution (400us/100us)

Latency [us]

F
re

qu
en

cy
 [1

]

0 200 400 600 800

0
5

10
20

30

Figure 3.10: Distribution of latencies
with RTnet at a cycle time of 400µs

3.5.3.1 Conclusion

Regarding the definition for accurate timing which has been stated in section 2.3.1.1,
the RTnet implementation reached its goals. Measured latency was never longer than
1ms with a cycle time of 1ms. As such assuming a maximum latency of 1ms, the
timing-behavior of data transmission is predictable in this network. A latency of 1ms
conforms to class “E” for latency of the IOANA Realtime Classification (IRC) [LM06,
cmp. p. 2].

Further investigations could be done to predict the behavior of the system in depen-
dency of ambient conditions. [Ric05] describes how to fit measured data to statistical
distributions. This allows to calculate the accuracy of hard real-time capabilities. Pre-
dictions could be made regarding the propability of a packet to arrive at its destination
on time.

Another approach could be to determine the relation between specific parameters and
the timing behavior of the system. [Lot01, cmp. pp. 689 – 722] explains regression
curves. This method is a mathematical description of the relation between random
variables. Based on measured data it can be applied to predict the timing behavior of
the communication system with changed ambient conditions.

3.6 QoS - Latency Measurements

Figure 3.2 depicts how the systems where set up to exchange prioritized traffic. Both
classification and handling of classified traffic were carried out on a Cisco 2950 Series
switch. Since the server (the communication sink) has been connected to the Cisco
switch using the trunk port, it had to support the IEEE 802.1Q standard too.

Both [Tho05, cmp. chapter 9.1] and [Cis07a, cmp.] explain that in this correlation
queuing disciplines only determine the way how data is sent. Further the destination
node is not possible to control the amount of data which is to be sent to it.

3.6. QOS - LATENCY MEASUREMENTS 66

The Cisco 802.1Q QoS implementation The configuration of VLANs has been car-
ried out according to the steps mentioned in [Cis07b, cmp.]. This is shown in listing
3.29.

1 Swi tch # v l a n d a t a b a s e
2 Swi tch (v l a n) # v l a n 20 name r e a l−t ime
3 Swi tch (v l a n) # e x i t
4 APPLY comple t ed .
5 E x i t i n g
6 Swi tch #

Listing 3.29: VLAN configuration on a Cisco 2950 Series Switch

Interfaces can be assigned to an existing VLAN. Listing 3.30 shows this part of the
running configuration of the used Cisco switch. Interface “FastEthernet0/4” has been
used to enable an internet connection for nodes in the network. It was used as an
uplink-port. Interface “FastEthernet0/3” has been configured as a trunk port. The
server (or communication sink) has been connected to this interface. Frames leaving
the switch through this port still have the extended 802.1Q ethernet frame format.

1 i n t e r f a c e F a s t E t h e r n e t 0 / 1
2 s w i t c h p o r t a c c e s s v l a n 20
3 s w i t c h p o r t mode a c c e s s
4 s w i t c h p o r t p r i o r i t y e x t e n d cos 7
5 spann ing−t r e e p o r t f a s t
6 !
7 i n t e r f a c e F a s t E t h e r n e t 0 / 2
8 s w i t c h p o r t a c c e s s v l a n 20
9 s w i t c h p o r t mode a c c e s s

10 s w i t c h p o r t p r i o r i t y e x t e n d cos 3
11 spann ing−t r e e p o r t f a s t
12 !
13 i n t e r f a c e F a s t E t h e r n e t 0 / 3
14 s w i t c h p o r t a c c e s s v l a n 20
15 s w i t c h p o r t mode t r u n k
16 spann ing−t r e e p o r t f a s t
17 !
18 i n t e r f a c e F a s t E t h e r n e t 0 / 4
19 s w i t c h p o r t a c c e s s v l a n 20
20 s w i t c h p o r t mode a c c e s s
21 spann ing−t r e e p o r t f a s t

Listing 3.30: Assigning interfaces to VLANs

With this experiment the standard image “SI” of the switch operating-system “IOS”
has been used. It has limited support for classification of ethernet traffic [Cis07a,
cmp.]. CoS values are assigned based on the switchport where ethernet frames are
received. The configuration statements are shown in listing 3.30. After issuing the
commands the configuration can be verified 3.31. The output of this status command
does not print configured trunk ports.

1 Swi tch # sh v l a n
2 VLAN Name S t a t u s P o r t s
3 −−
4 1 d e f a u l t a c t i v e Fa0 / 6 , Fa0 / 8 , Fa0 / 9 , Fa0 / 1 0 ,
5 Fa0 / 1 1 , Fa0 / 1 2
6 20 r e a l−t ime a c t i v e Fa0 / 1 , Fa0 / 2 , Fa0 / 4
7 . . .

Listing 3.31: Verifying the VLAN configuration

IOS of the Cisco switch implements a weighted round-robin scheduling. This ap-
proach divides traffic of an ethernet interface into four queues which can be priori-
tized. [Cis07a, cmp.] states that the weight value determines how many packets are
transmitted for every other weight of a different queue. On Line 1 in listing 3.32 all
queues have been assigned the same weight. As such each packet is handled with the
same priority. Line 2 and 3 assign CoS values 7 and 3 to different WRR queues. This is
necessary to make sure that traffic coming from these two clients is handled separately.

3.6. QOS - LATENCY MEASUREMENTS 67

1 Swi tch (c o n f i g) # wrr−queue bandwid th 255 255 255 255
2 Swi tch (c o n f i g) # wrr−queue cos−map 1 7
3 Swi tch (c o n f i g) # wrr−queue cos−map 2 3

Listing 3.32: Prioritization of classified traffic on a Cisco 2950 Series Switch

The complete configuration parameters of the Cisco Catalyst 2950 switch are shown
in listing A.12 in the appendix.

The Linux 802.1Q QoS implementation In the Linux operating system the 802.1Q
standard is implemented as a kernel-module. It is called “8021q.ko” on Linux 2.6 and
”8021q.o” on Linux 2.4 respectively. After loading the module using modprobe or
insmod it is possible for the Linux system to handle ethernet frames that have been
tagged using the 802.1P and 802.1Q header respectively.

Listing 3.33 shows the commands which have been executed to enable VLAN support
for the running Linux kernel using the vconfig tool.

1 r t k 6 2 :~# modprobe 8021 q
2 802 .1Q VLAN S u p p o r t v1 . 8 Ben G r ee a r < g r e e a r b @ c a n d e l a t e c h . com>
3 A l l bugs added by David S . M i l l e r <davem@redhat . com>
4 r t k 6 2 :~# v c o n f i g add e t h 1 20
5 Added VLAN wi th VID == 20 t o IF −: e t h 1 :−
6 r t k 6 2 :~# c a t / p roc / n e t / v l a n / c o n f i g
7 VLAN Dev name | VLAN ID
8 Name−Type : VLAN_NAME_TYPE_RAW_PLUS_VID_NO_PAD
9 e t h 1 . 2 0 | 20 | e t h 1

10 r t k 6 2 :~# c a t / p roc / n e t / v l a n / e t h 1 . 2 0
11 e t h 1 . 2 0 VID : 20 REORDER_HDR: 1 dev−>p r i v _ f l a g s : 1
12 t o t a l f r a me s r e c e i v e d 26
13 t o t a l b y t e s r e c e i v e d 2109
14 B r o a d c a s t / M u l t i c a s t Rcvd 8
15
16 t o t a l f r a me s t r a n s m i t t e d 0
17 t o t a l b y t e s t r a n s m i t t e d 0
18 t o t a l headroom i n c 0
19 t o t a l encap on xmi t 0
20 Device : e t h 1
21 INGRESS p r i o r i t y mappings : 0 : 0 1 : 0 2 : 0 3 : 0 4 : 0 5 : 0 6 : 0 7 : 0
22 EGRESSS p r i o r i t y Mappings :
23 r t k 6 2 :~# i f c o n f i g −a
24 . . .
25 e t h 1 Link encap : E t h e r n e t HWaddr 0 0 : 0 2 : 4 4 : 4 5 : E5 : A2
26 i n e t 6 add r : f e80 : : 2 0 2 : 4 4 f f : f e45 : e5a2 / 6 4 Scope : Link
27 UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 M e t r i c : 1
28 RX p a c k e t s :37745 e r r o r s : 0 dropped : 0 o v e r r u n s : 0 f rame : 0
29 TX p a c k e t s :14514 e r r o r s : 0 dropped : 0 o v e r r u n s : 0 c a r r i e r : 0
30 c o l l i s i o n s : 0 t x q u e u e l e n :1000
31 RX b y t e s :8001984 (7 . 6 MiB) TX b y t e s :1406908 (1 . 3 MiB)
32 I n t e r r u p t : 1 1 Base a d d r e s s : 0 x8e00
33
34 e t h 1 . 2 0 Link encap : E t h e r n e t HWaddr 0 0 : 0 2 : 4 4 : 4 5 : E5 : A2
35 BROADCAST MULTICAST MTU:1500 M e t r i c : 1
36 RX p a c k e t s :115 e r r o r s : 0 dropped : 0 o v e r r u n s : 0 f rame : 0
37 TX p a c k e t s : 0 e r r o r s : 0 dropped : 0 o v e r r u n s : 0 c a r r i e r : 0
38 c o l l i s i o n s : 0 t x q u e u e l e n : 0
39 RX b y t e s :7715 (7 . 5 KiB) TX b y t e s : 0 (0 . 0 b)
40 . . .

Listing 3.33: Enabling 802.1Q on an interface with Linux

After addition of the VLAN a new interface “eth1.20” was made available. On this
interface ethernet frames from which the VLAN header information has been removed
are received. Thus it is assigned an IP address (10.0.0.1 in this case). The original in-
terface “eth1” still receives tagged ethernet frames. It is not assigned an IP address and
put into promiscuous mode to accept all frames. Listing 3.34 shows the configuration
commands.

1 r t k 6 2 :~# i f c o n f i g e t h 1 0 promisc
2 r t k 6 2 :~# i f c o n f i g e t h 1 . 2 0 1 0 . 0 . 0 . 1 netmask 2 5 5 . 0 . 0 . 0 up

3.6. QOS - LATENCY MEASUREMENTS 68

Listing 3.34: Configuration of additional VLAN-interfaces

3.6.1 Using standard networking functions

Listing A.9 in the appendix shows that POSIX networking functions have been wrapped
so that they are usable as function pointers. Further difference to the RTnet module
shown in A.8 is, that rt_make_soft_real_time() and
rt_make_hard_real_time() functions are not called (function bodies are empty)
because POSIX networking functions are implemented as standard system calls which
may not occur when hard real-time is activated.

The rt_sleep() function call had to be replaced with rt_busy_sleep() to
work correctly. This influenced the period between packet transmission, but not la-
tency as packets have to be processed on a dedicated computer which is not in the
busy waiting state. It caused more cpu-time to be used by the real-time processes
during waiting phases on the communication source.

3.6.2 Gathering latency data

1 r t k 6 2 : / u s r / l o c a l / d i p l o m a _ t h e s i s # . / qos_comm_sink −−p o r t 1234
2 S t a r t i n g ha rd r e a l−t ime r e c e i v e p r o c e s s . A l l your base a r e b e l ong t o us !
3 Qu i t message r e c e i v e d , s h u t t i n g down t h e r e f o r e . For g r e a t j u s t i c e .
4
5 S t a t i s t i c s :
6 ===========
7 PIN1 : 300
8 PIN2 : 2000000
9 PIN3 : 0

10 PIN4 : 0
11 PIN5 : 0
12 PIN6 : 0
13 PIN7 : 0
14 PIN8 : 0
15 1 Qu i t message r e c e i v e d .

Listing 3.35: Invoking the application on the master node

1 r t c e l e r o n : / u s r / l o c a l / d i p l o m a _ t h e s i s # . / qos_comm_source −−s e r v e r−p o r t 1234 −−s e r v e r−i p 1 0 . 0 . 0 . 1 \
2 −−message PIN1 −−t o g g l e−p i n 2 −−num−messages 300 −−num−f a i l u r e−messages 20 −−tx−d e l a y 1000000000

Listing 3.36: Invoking the application on the first slave node

The second client machine is used to cause additional load during the transmission
(listing 3.37). Thus a larger number of messages to transmit is provided (1000000) to
occupy media as much and as long as possible.

1 r t g e o d e : / u s r / l o c a l / d i p l o m a _ t h e s i s # . / qos_comm_source −−s e r v e r−p o r t 1234 −−s e r v e r−i p 1 0 . 0 . 0 . 1 \
2 −−message PIN2 −−t o g g l e−p i n 1 −−num−messages 1000000 −−num−f a i l u r e−messages 20 −−tx−d e l a y

1000000000

Listing 3.37: Invoking the application on the second slave node

Figure 3.11 and 3.12 show how latency has been measured in the QoS network. The
source transmits 300 packets towards the sink which change the state of the first data-
bit pin on both the source and the sink. Latency is then recorded through the parallel
ports which are connected to a persistence oscilloscope.

3.6. QOS - LATENCY MEASUREMENTS 69

Figure 3.11: Latency with one slave Figure 3.12: Latency with two slaves

Latency distribution (1000us/−−us)

Latency [us]

F
re

qu
en

cy
 [1

]

60 80 100 120 140

0
10

20
30

40
50

Figure 3.13: Latency distribution with
one slave

Latency distribution (1000us/−−us)

Latency [us]

F
re

qu
en

cy
 [1

]

60 80 100 120 140

0
10

20
30

40
50

Figure 3.14: Latency distribution with
two slaves

3.6.3 Measurement results

Histograms show that latency values are lower than with the experiments in 3.5.3. The
histograms in 3.13 and 3.14 display that latency increases with the number of nodes
occupying the medium at the same time. The distribution shown in figure 3.14 shows
more density of latency values in upper levels. This could be caused by the medium
which has to be shared between the one more node as in figure 3.13. This is the same
behavior which has been expected in 3.5.3. Further investigations could prove this
relation.

3.6.3.1 Conclusion

This experiment showed that a QoS network with three nodes which has been imple-
mented using the standard POSIX networking functions fulfills the requirements for
accurate timing in a hard real-time network. Here measured latency was lower than
with the RTnet experiment.

In an industrial environment much more clients occupy the medium at the same time.
Therefore it would be necessary to prove that this concept still works under these cir-
cumstances. Another approach would be to simulate the timing behavior in a network
with a mutlitude of nodes accessing the same medium.

Chapter 4

Real-Time Ethernet applied -
Industrial solutions

In 2.10.2 RTnet has been introduced. This prototype project has not been standardized
yet. Therefore it has just academical relevance. A table in [WB05, p. 313] shows a
comparison of widespread standardized real-time capable networks.

4.1 Technology overview

[CS06, cmp. p. 1] mentions that the IEC has accepted 10 suggestions at the time of its
writing (April 2006) for ethernet based industrial communication protocols (see table
4.1).

SPECIFICATION NAME IEC STANDARD

EPA IEC / PAS 62409
EtherCAT IEC / PAS 62407
EtherNet/IP IEC / PAS 62413
ETHERNET Powerlink IEC / PAS 62408
MODBUS-RTPS IEC / PAS 62030
P-NET on IP IEC / PAS 62412
PROFINET IO IEC / PAS 62411
SERCOS III IEC / PAS 62410
TCnet IEC / PAS 62406
Vnet/IP IEC / PAS 62405

Table 4.1: Pre-standards of ethernet based automation protocols

Further Schwab and Lüder mention that in each of the pre-standards ethernet is adapted
by software- and/or hardware-extensions to meet requirements (mainly real-time be-
havior and determinism) for automation technology:

• protocols which are implemented on top of layer 3 of the OSI-reference model
(the stack-model on the left of figure 4.1)

4.2. ETHERNET POWERLINK 71

• protocols which replace layers 3 and 4 of the OSI-reference model (the stack-
model in the middle of figure 4.1)

• protocols which modify layers 2 to 4 of the OSI-reference model (the stack-
model on the right of figure 4.1)

Application

Real-time Data Exchange

TCP UDP

IP

Media Access Control
CSMA/CD
Ethernet

Application

TCP UDP

IP

Media Access Control
CSMA/CD
Ethernet

Real-time
Data

Exchange

Application

TCP UDP

IP

Media Access
Control

CSMA/CD
Ethernet

Standard-Data Real-time Data

Real-time

Software

Hardware

Figure 4.1: Stack modifications in real-time ethernet networks [CS06, cmp. p. 1]

This document focuses on industrial ethernet solutions that are most relevant [CS06,
cmp. p. 1] for the European automation market.

4.2 ETHERNET Powerlink

ETHERNET Powerlink extends the operating systems layer 3 and 4 implementation
of the OSI-stack with an additional middleware for isochronous, cyclic data exchange.
This corresponds to the graphic in the middle of figure 4.1. Asynchronous data is
exchanged through an additional layer between layer 2 and 3 of the OSI-model [CS06,
cmp. p. 2]. These changes in the standard networking-stack implementations still
allow the usage of standard ethernet components [cTA06, cmp. p. 6].

ETHERNET Powerlink can be operated in two modes: open and protected mode
[WB05, cmp. p. 304]. The latter relies on a special protocol suite and does not allow
the usage of standard protocols such as TCP, UDP or IP in general. Open mode is less
real-time capable than protected mode, but enables the usage of standard protocols.

Access to the media is centrally controlled by the “Managing Node” (MN) [WB05,
cmp. p. 303pp.]. Thus ETHERNET Powerlink is organized as a monomaster system
with centralized slot allocation. [cTA06, cmp. p. 8] explains how a base-cycle in
protected mode is organized. And [WB05, cmp. p. 304] gives details about each
phase:

• start phase: a broadcast message (Start-of-Cycle, SoC) synchronizes all partici-
pating nodes.

• isochronous phase: the communication master requests every participating node
with a unicast message (PollRequest, PReq) to transmit their gathered data; each
node which has been requested broadcasts its data in a PollResponse (PRes);
after querying each node the managing node broadcasts an End-of-Cycle (EoC)
message.

4.3. ETHERNET/IP 72

• asynchronous phase: is used for ad-hoc data to be placed onto the bus; during
this phase standard protocols such as TCP, UDP and IP can be transmitted over
real-time media; nodes which want to send data during the asynchronous phase
have to signal this circumstance in a flag of the PollResponse message. Upon
reception of the AsyncInvite message nodes start to transmit their ad-hoc data.

[cTA06, cmp. p. 9] further mentions a third operation mode – multiplex mode. In
this case isochronous data slots may be used by nodes only every nth communication
cycle. Thus bandwidth can be preserved and better latency can be achieved.

4.2.1 Conclusion

As with RTnet, ETHERNET Powerlink follows the TDMA approach regarding media
access. The underlying CSMA/CD media access is still active. No collisions will
occur because the master enables only a single node to occupy the media at a time
[cTA06, cmp. p. 8]. During the “open” operational mode it is possible to use standard
network protocols such as TCP, UDP and IP.

4.3 Ethernet/IP

[ODV06, cmp. p. 2] states that “EtherNet/IP is a member of a family of networks that
implements the Common Industrial Protocol (CIP)”. CIP has been developed as a net-
work independent protocol. Other networks beneath the CIP layer may be DeviceNet
for example [VS06, cmp. p. 2]. Secure data transmission such as program up- and
download or the transmission of configuration data is implemented using the TCP .
Control and time sensitive data is conveyed using the UDP .

[CS06, cmp. p. 2] mentions that EtherNet/IP is implemented above the TCP/IP and
UDP/IP layers of an operating system respectively. Thus it is possible to offer an Eth-
erNet/IP implementation as an additional software component which does not modify
elements of the target operating system. The role of networking layers in this regard is
depicted in figure 4.1 on the left.

This implementation is only soft real-time capable. This can be led back to the usage
of standard ethernet with factors such as full queues and/or collisions as described in
and 2.4.3.2.

4.4 EtherCAT

EtherCAT technology has been inventented and users incorporated to the EtherCAT
Technology Group (ETG) [WB05, cmp. p. 306].

The publication further mentions that EtherCAT participants are connected together in
a logical bus with duplex lines. Physical arrangements may be the line or tree topology.
A single master is responsible for synchronization and message exchange.

4.5. PROFINET 73

The EtherCAT protocol is optimized for efficient bandwidth utilization [Gro06, cmp.
p. 9]. Messages originate from the master and are handed from one node to the other.
Thus only one header for all nodes in an EtherCAT domain is appened to transmitted
data within a communication cycle. The usable data rate can be up to 90% of channel
bandwidth. Slave nodes require special hardware - the Fieldbus Memory Management
Unit (FMMU) which receives and interprets the messages. If a slave node has been
addressed in the message the corresponding part of the telegram is copied into the main
memory of the slave to be handled by its operating software. The content of messages
conveyed on the EtherCAT network get modified when they get handed through a node
[Ros06, cmp. p. 1].

For the interpretation of telegrams at least on the slave side, this technology requires
stack modifications as shown on the most right of figure 4.1. For the master-node
software-only implementations exist (e.g. http://www.etherlab.org by the German com-
pany IgH).

4.5 PROFINET

PROFINET is a part of standards IEC 61158 and IEC 61784 [e.V06, cmp. p. 1].
Since PROFINET V2, ethernet has been chosen as the only data link protocol. While
PROFINET V2 has been implemented in software, PROFINET V3’s real-time capa-
bilities are based on hardware extensions [CS06, cmp. p. 2].

Transmission of data with PROFINET can be divided into three subgroups: non time-
critical traffic, real-time traffic and isochronous real-time traffic [e.V06, cmp. p. 3].
PROFINET V3 like EtherCAT requires stack modifications as shown in the right
graphic of figure 4.1. PROFINET V2 can be categorized into the protocols which
are completely implemented in software, as such it corresponds to the middle graphic
in figure 4.1 [CS06, cmp. p. 1].

Non time-critical traffic (TCP/IP and UDP/IP traffic) Communication in this mode
occurs with protocols conforming to international standards such as IEEE 802.3 (eth-
ernet), TCP/IP and UDP/IP respectively. TCP/IP ensures correct order or transmitted
data. This feature is also called “flow-control”. As such, this mode is mainly used to
transfer configuration data [e.V06, cmp. p. 1].

Real-time traffic (RT) is used to convey time-critical process-data in a production
environment . In this mode IP-addressing is only used partially [e.V06, cmp. p. 1].
RT-communication happens parallel to transmission of non time-critical data. The
following scenarios are considered:

• RT-communication within the same network-segment: only ethernet is used.
This can be determined by ethertype “0x8892” of received messages. Cycle
times of less than 10 milliseconds can be achieved with this approach [WB05,
cmp. p. 309].

http://www.etherlab.org

4.6. MODBUS/TCP 74

• RT-communication between different network-segments: routing-information is
required to determine the target network. Here time-sensitive data is conveyed
over the UDP protocol (“RT over UDP”).

• RT-communication with multiple participants: cyclic data exchange occurs with
ethernet multicast in this case.

Isochronous real-time traffic mode (IRT) is intended to convey time-sensitive data
with requirements for deterministic timing-behaviour such as data for motion control
applications. No routing is possible and as such data transmission can only occur
within the same network segment.

Bus cycles are devided into the so called “red interval” for isochronous data transmis-
sion and into the “green interval” for RT, TCP/IP and UDP/IP transmission respec-
tively. The PTCP-Protocol is used for synchronization of participants and communi-
cation elements such as switches [WB05, cmp. p. 310]. Further special ASICs are
required for transmission in IRT mode. The changeover from red to the green interval
is controled by hardware [e.V06, cmp. p. 4]. Bandwidth has to be divided into a IRT
part and a part for TCP/IP, UDP/IP and RT communication.

4.5.1 Integration of existing fieldbusses

PROFINET supplies a modell for integration of existing PROFIBUS, INTERBUS and
DeviceNet fieldbus installations. The intersection from PROFINET to fieldbus net-
works occurs with the help of proxies. This device represents fieldbus devices as eth-
ernet devices for the PROFINET network and PROFINET devices as fieldbusdevices
on the fieldbus [e.V06, cmp. p. 22].

4.6 MODBUS/TCP

“MODBUS is an application layer messaging protocol positioned at level 7 of the
OSI model, that provides client/server communication between devices connected on
different types of busses or networks.” [MI06a, p. 2]. MODBUS-RTPS is to be
standardized in the international standard IEC PAS 62030.

Currently the following busses or networks are supported as underlying communica-
tion infrastructure:

• TCP/IP over Ethernet

• Asynchronous serial transmission over different media types (EIA/TIA-232-E,
EIA-422, EIA/TIA-485-A, fiber, radio, etc.)

• token passing networks such as MODBUS PLUS

To gain independcy of the underlying communication technology the MODBUS pro-
tocol defines a simple Protocol Data Unit (PDU) which is media independent. This
unit is then encapsulated into an Application Data Unit (ADU) which contains e.g.

4.7. SERCOS III 75

physical addressing information [MI06b, cmp. p. 4]. [CS06, cmp. p. 2] states that
MODBUS-RTPS, which is a different name for MODBUS/TCP, is based on ethernet
and standard TCP/IP and implemented on top of layer 4 of the OSI model. Data is
exchange occurs connection oriented and as such integrity of data is ensured during
transmission.

MODBUS is implemented as a client/server communication infrastructure [MI06b,
cmp. p. 2]. The client/server model is based on four types of messages:

• MODBUS Reqeust: sent by the client towards the server

• MODBUS Indication: request message received by the server

• MODBUS Response: message sent by the server

• MODBUS Confirmation: response message received by the client

As a level 7 protocol MODBUS-RTPS is intended to provide an abstract data model
which can be used to transmit the process image (see [MI06a, cmp. p. 3pp]. There
is no synchronization of clients and the server. Thus it is not possible to overcome
the limitations of classical ethernet (e.g. collisions, full queues in communication
elements). MODBUS-RTPS conforms to the left picture in figure 4.1.

4.7 Sercos III

Sercos III uses the TDMA approach on ethernet networks [CS06, cmp. p. 2]. Trans-
mission can be devided into two transmission modes: real-time and non real-time
communication.

4.7.1 Topology

Sercos III is based on a ring topology. Because of duplex capabilities of ethernet
technology the ring is two-way. Data paths are therefore redundant. Using the line
topology is also possible but the advantage of redundancy is not available then [Lut06,
cmp. p. 1].

4.7.2 Real-Time communication

The ethertype for frames transmitted over the real-time channel is “0x88CD”. The non
real-time service channel is used for transmission of parameters and diagnostic data.

At the beginning of a communication cycle the master sends a broadcast message
(master-synchronizationtelegram, “MST”) to synchronize clocks of participants. At
the initialization phase time slots have been associated with clients. During these time
slots clients send their data (actual value) towards the communication master in ampli-
fier telegrams “AT”. After that the server transmits its set points towards the clients in
a master data telegram “MDT” [WB05, cmp. p. 311].

4.8. PROSPECT OF INDUSTRIAL SOLUTIONS 76

Whereas non real-time data is transmitted in standard ethernet frames, real-time data
is conveyed in adapted ethernet frames [WB05, cmp. p. 312].

4.8 Prospect of industrial solutions

4.8.1 Organization in interest groups

All mentioned approaches in the industrial environment are organized in so called
interest groups which in turn are registered clubs. Members of these clubs are often
enabled to participate when technology decisions have to be met. Further access to
documents regarding the technology is restricted to members too.

One of the largest interest groups is PROFIBUS International. It has 1300 members
(e.g. manufacturing companies, integrators, end users, institutes, etc.) worldwide
[e.V06, cmp. p. 27]. Ethernet Powerlink follows with 400 members [cTA06, cmp.
p. 5] and 150.000 nodes which are installed in 25.000 different factory machines.
The EtherCAT Technology Group comprises 300 members [Ros06, cmp. p. 5] and
the Sercos interest group has approximately 60 members [Lut06, cmp. p. 1] and 1.5
million nodes which implement this protocol.

4.8.2 Compatibility and Enhancements

Some protocols can be seen as a successor of previous fieldbus protocols. Mod-
bus/TCP is an implementation of the Modbus protocol upon a TCP/IP stack [MI06a,
cmp. p. 2]. The application layer of Ethernet Powerlink is based on the CANOpen
protocol [cTA06, cmp. p. 10]. PROFINET offers interfaces to existing fieldbus tech-
nologies such as PROFIBUS, AS Interface and Interbus [e.V06, cmp. p. 2].

Using existing protocols for the application layer has the advantage of interoperability
and exchangeability of components from different vendors [cTA06, cmp. p. 10].

4.8.3 Fields of application

[WB05, cmp. p. 312–313] mentions fields of applications for industrual real-time
ethernet implementations. Ethernet Powerlink can be used in scenarios which require
standard ethernet hardware and Sercos III is intended to be used in motion control
scenarios where lowest latency times are a requirement. As of the writing of [WB05]
in 2005 PROFINET and Sercos III were only announced standards.

Appendix A

Source Code

A.1 Managing RTAI and RTnet

1 #! / b i n / sh
2 ### BEGIN INIT INFO
3 # P r o v i d e s : s k e l e t o n
4 # Requi red−S t a r t : $ l o c a l _ f s $ r e m o t e _ f s
5 # Requi red−Stop : $ l o c a l _ f s $ r e m o t e _ f s
6 # D e f a u l t−S t a r t : 2 3 4 5
7 # D e f a u l t−Stop : 0 1 6
8 # Shor t−D e s c r i p t i o n : RTAI
9 # D e s c r i p t i o n : Linux Real−Time e x t e n s i o n s s t a r t s c r i p t

10 #
11 ### END INIT INFO
12
13 # Author : R a i n e r P o i s e l <tm031051@fh−s t p o e l t e n . ac . a t >
14
15 # Do NOT " s e t −e "
16
17 # PATH s h o u l d on ly i n c l u d e / u s r /∗ i f i t runs a f t e r t h e m o u n t n f s . sh s c r i p t
18 PATH=/ s b i n : / u s r / s b i n : / b i n : / u s r / b i n
19 DESC=" S e t s my s e t t i n g s "
20 NAME= r t a i
21 SCRIPTNAME=/ e t c / i n i t . d /$NAME
22
23 # Load t h e VERBOSE s e t t i n g and o t h e r rcS v a r i a b l e s
24 . / l i b / i n i t / v a r s . sh
25
26 # D e f i n e LSB log_∗ f u n c t i o n s .
27 # Depend on l s b−base (>= 3.0−6) t o e n s u r e t h a t t h i s f i l e i s p r e s e n t .
28 . / l i b / l s b / i n i t−f u n c t i o n s
29
30 #
31 # F u n c t i o n t h a t s t a r t s t h e daemon / s e r v i c e
32 #
33 d o _ s t a r t ()
34 {
35 # R e t ur n
36 # 0 i f daemon has been s t a r t e d
37 # 1 i f daemon was a l r e a d y r u n n i n g
38 # 2 i f daemon c o u l d n o t be s t a r t e d
39
40 # c r e a t e d e v i c e s
41 mknod −m 666 / dev / r t a i−shm c 10 254 >/ dev / n u l l 2>&1
42 f o r n i n ‘ seq 0 9 ‘ ; do mknod −m 666 / dev / r t f $ n c 150 $n >/ dev / n u l l 2>&1; done
43
44 # load r e a l−t i m e modules
45 insmod / u s r / l o c a l / r t a i / modules / r t a i _ h a l . ko >/ dev / n u l l 2>&1
46 insmod / u s r / l o c a l / r t a i / modules / r t a i _ l x r t . ko >/ dev / n u l l 2>&1
47 insmod / u s r / l o c a l / r t a i / modules / r t a i _ s e m . ko >/ dev / n u l l 2>&1
48 insmod / u s r / l o c a l / r t a i / modules / r t a i _ r t d m . ko >/ dev / n u l l 2>&1
49
50 r e t u r n 0
51 }
52
53 #
54 # F u n c t i o n t h a t s t o p s t h e daemon / s e r v i c e
55 #
56 d o _ s t o p ()
57 {
58 # R e t ur n
59 # 0 i f daemon has been s t o p p e d
60 # 1 i f daemon was a l r e a d y s t o p p e d

A.1. MANAGING RTAI AND RTNET 78

61 # 2 i f daemon c o u l d n o t be s t o p p e d
62 # o t h e r i f a f a i l u r e o c c u r r e d
63
64 rmmod r t a i _ r t d m >/ dev / n u l l 2>&1
65 rmmod r t a i _ s e m >/ dev / n u l l 2>&1
66 rmmod r t a i _ l x r t >/ dev / n u l l 2>&1
67 rmmod r t a i _ h a l >/ dev / n u l l 2>&1
68
69 r e t u r n 0
70 }
71
72 #
73 # F u n c t i o n t h a t s e n d s a SIGHUP t o t h e daemon / s e r v i c e
74 #
75 d o _ r e l o a d () {
76 #
77 # I f t h e daemon can r e l o a d i t s c o n f i g u r a t i o n w i t h o u t
78 # r e s t a r t i n g (f o r example , when i t i s s e n t a SIGHUP) ,
79 # t h e n imp lemen t t h a t he re .
80 #
81 echo −n ""
82 }
83
84 case " $1 " i n
85 s t a r t)
86 ["$VERBOSE" != no] && log_daemon_msg " S t a r t i n g $DESC" "$NAME"
87 d o _ s t a r t
88 case " $?" i n
89 0 | 1) ["$VERBOSE" != no] && log_end_msg 0 ; ;
90 2) ["$VERBOSE" != no] && log_end_msg 1 ; ;
91 e sac
92 ; ;
93 s t o p)
94 ["$VERBOSE" != no] && log_daemon_msg " S t o p p i n g $DESC" "$NAME"
95 d o _ s t o p
96 case " $?" i n
97 0 | 1) ["$VERBOSE" != no] && log_end_msg 0 ; ;
98 2) ["$VERBOSE" != no] && log_end_msg 1 ; ;
99 e sac

100 ; ;
101 # r e l o a d | f o r c e−r e l o a d)
102 #
103 # I f d o _ r e l o a d () i s n o t imp lemen ted t h e n l e a v e t h i s commented o u t
104 # and l e a v e ’ f o r c e−re load ’ as an a l i a s f o r ’ r e s t a r t ’ .
105 #
106 # log_daemon_msg " R e l o a d i n g $DESC" "$NAME"
107 # d o _ r e l o a d
108 # log_end_msg $?
109 # ; ;
110 r e s t a r t | f o r c e−r e l o a d)
111 #
112 # I f t h e " r e l o a d " o p t i o n i s imp lemen ted t h e n remove t h e
113 # ’ f o r c e−re load ’ a l i a s
114 #
115 log_daemon_msg " R e s t a r t i n g $DESC" "$NAME"
116 d o _ s t o p
117 case " $?" i n
118 0 | 1)
119 d o _ s t a r t
120 case " $?" i n
121 0) log_end_msg 0 ; ;
122 1) log_end_msg 1 ; ; # Old p r o c e s s i s s t i l l r u n n i n g
123 ∗) log_end_msg 1 ; ; # F a i l e d t o s t a r t
124 e sac
125 ; ;
126 ∗)
127 # F a i l e d t o s t o p
128 log_end_msg 1
129 ; ;
130 e sac
131 ; ;
132 ∗)
133 # echo " Usage : $SCRIPTNAME { s t a r t | s t o p | r e s t a r t | r e l o a d | f o r c e−r e l o a d } " >&2
134 echo " Usage : $SCRIPTNAME { s t a r t | s t o p | r e s t a r t | f o r c e−r e l o a d } " >&2
135 e x i t 3
136 ; ;
137 e sac
138
139 :

Listing A.1: rtai script

1 #! / b i n / sh
2 ### BEGIN INIT INFO
3 # P r o v i d e s : s k e l e t o n
4 # Requi red−S t a r t : $ l o c a l _ f s $ r e m o t e _ f s
5 # Requi red−Stop : $ l o c a l _ f s $ r e m o t e _ f s
6 # D e f a u l t−S t a r t : 2 3 4 5

A.1. MANAGING RTAI AND RTNET 79

7 # D e f a u l t−Stop : 0 1 6
8 # Shor t−D e s c r i p t i o n : RTnet
9 # D e s c r i p t i o n : Real−Time e t h e r n e t s t a r t s c r i p t

10 #
11 ### END INIT INFO
12
13 # Author : R a i n e r P o i s e l <tm031051@fh−s t p o e l t e n . ac . a t >
14
15 # Do NOT " s e t −e "
16
17 # PATH s h o u l d on ly i n c l u d e / u s r /∗ i f i t runs a f t e r t h e m o u n t n f s . sh s c r i p t
18 PATH=/ s b i n : / u s r / s b i n : / b i n : / u s r / b i n
19 DESC=" S e t s my s e t t i n g s "
20 NAME= r t n e t
21 SCRIPTNAME=/ e t c / i n i t . d /$NAME
22
23 # Load t h e VERBOSE s e t t i n g and o t h e r rcS v a r i a b l e s
24 . / l i b / i n i t / v a r s . sh
25
26 # D e f i n e LSB log_∗ f u n c t i o n s .
27 # Depend on l s b−base (>= 3.0−6) t o e n s u r e t h a t t h i s f i l e i s p r e s e n t .
28 . / l i b / l s b / i n i t−f u n c t i o n s
29
30 #
31 # F u n c t i o n t h a t s t a r t s t h e daemon / s e r v i c e
32 #
33 d o _ s t a r t ()
34 {
35 # R e t ur n
36 # 0 i f daemon has been s t a r t e d
37 # 1 i f daemon was a l r e a d y r u n n i n g
38 # 2 i f daemon c o u l d n o t be s t a r t e d
39
40 # Add code here , i f n e c e s s a r y , t h a t w a i t s f o r t h e p r o c e s s t o be ready
41 # t o h an d l e r e q u e s t s from s e r v i c e s s t a r t e d s u b s e q u e n t l y which depend
42 # on t h i s one . As a l a s t r e s o r t , s l e e p f o r some t i m e .
43
44 # t u r n o f f n e t w o r k i n g
45 / e t c / i n i t . d / n e t w o r k i n g s t o p
46
47 # remove non r e a l−t i m e modules
48 rmmod 8139 t o o >/ dev / n u l l 2>&1
49 rmmod m i i >/ dev / n u l l 2>&1
50
51 # c r e a t e d e v i c e nodes
52 mknod / dev / r t n e t c 10 240
53
54 # load r e a l−t i m e modules
55 / u s r / l o c a l / r t n e t / s b i n / r t n e t s t a r t
56 }
57
58 #
59 # F u n c t i o n t h a t s t o p s t h e daemon / s e r v i c e
60 #
61 d o _ s t o p ()
62 {
63 # R e t ur n
64 # 0 i f daemon has been s t o p p e d
65 # 1 i f daemon was a l r e a d y s t o p p e d
66 # 2 i f daemon c o u l d n o t be s t o p p e d
67 # o t h e r i f a f a i l u r e o c c u r r e d
68
69 # un load r e a l−t i m e modules
70 / u s r / l o c a l / r t n e t / s b i n / r t n e t s t o p
71
72 # remove d e v i c e nodes
73 rm / dev / r t n e t >/ dev / n u l l 2>&1
74
75 # load non r e a l−t i m e modules
76 modprobe m i i
77 modprobe 8139 t o o
78
79 }
80
81 #
82 # F u n c t i o n t h a t s e n d s a SIGHUP t o t h e daemon / s e r v i c e
83 #
84 d o _ r e l o a d () {
85 #
86 # I f t h e daemon can r e l o a d i t s c o n f i g u r a t i o n w i t h o u t
87 # r e s t a r t i n g (f o r example , when i t i s s e n t a SIGHUP) ,
88 # t h e n imp lemen t t h a t he re .
89 #
90 echo −n ""
91 }
92
93 case " $1 " i n
94 s t a r t)
95 ["$VERBOSE" != no] && log_daemon_msg " S t a r t i n g $DESC" "$NAME"
96 d o _ s t a r t

A.1. MANAGING RTAI AND RTNET 80

97 case " $?" i n
98 0 | 1) ["$VERBOSE" != no] && log_end_msg 0 ; ;
99 2) ["$VERBOSE" != no] && log_end_msg 1 ; ;

100 e sac
101 ; ;
102 s t o p)
103 ["$VERBOSE" != no] && log_daemon_msg " S t o p p i n g $DESC" "$NAME"
104 d o _ s t o p
105 case " $?" i n
106 0 | 1) ["$VERBOSE" != no] && log_end_msg 0 ; ;
107 2) ["$VERBOSE" != no] && log_end_msg 1 ; ;
108 e sac
109 ; ;
110 # r e l o a d | f o r c e−r e l o a d)
111 #
112 # I f d o _ r e l o a d () i s n o t imp lemen ted t h e n l e a v e t h i s commented o u t
113 # and l e a v e ’ f o r c e−re load ’ as an a l i a s f o r ’ r e s t a r t ’ .
114 #
115 # log_daemon_msg " R e l o a d i n g $DESC" "$NAME"
116 # d o _ r e l o a d
117 # log_end_msg $?
118 # ; ;
119 r e s t a r t | f o r c e−r e l o a d)
120 #
121 # I f t h e " r e l o a d " o p t i o n i s imp lemen ted t h e n remove t h e
122 # ’ f o r c e−re load ’ a l i a s
123 #
124 log_daemon_msg " R e s t a r t i n g $DESC" "$NAME"
125 d o _ s t o p
126 case " $?" i n
127 0 | 1)
128 d o _ s t a r t
129 case " $?" i n
130 0) log_end_msg 0 ; ;
131 1) log_end_msg 1 ; ; # Old p r o c e s s i s s t i l l r u n n i n g
132 ∗) log_end_msg 1 ; ; # F a i l e d t o s t a r t
133 e sac
134 ; ;
135 ∗)
136 # F a i l e d t o s t o p
137 log_end_msg 1
138 ; ;
139 e sac
140 ; ;
141 ∗)
142 # echo " Usage : $SCRIPTNAME { s t a r t | s t o p | r e s t a r t | r e l o a d | f o r c e−r e l o a d } " >&2
143 echo " Usage : $SCRIPTNAME { s t a r t | s t o p | r e s t a r t | f o r c e−r e l o a d } " >&2
144 e x i t 3
145 ; ;
146 e sac
147
148 :

Listing A.2: rtnet script

A.1. MANAGING RTAI AND RTNET 81

A.1.1 The real-time data transmission Testing framework

A.1.1.1 The build script

1 # F i l e : M a k e f i l e
2 # Author : R a i n e r P o i s e l <tm031051@fh−s t p o e l t e n . ac . a t >
3 # D e s c r i p t i o n : M a k e f i l e f o r t h e RT Communicat ion s o u r c e and s i n k
4 # C r e a t e d : March 31 , 2007
5 # H i n t s :
6
7 CC=cc
8 TAR= t a r
9 STRIP= s t r i p

10 RTAI_CONFIG_PREFIX =/ u s r / l o c a l / r t a i / b i n
11 CFLAGS=−c −g −Wall −I / u s r / s r c / l i n u x ‘ $ (RTAI_CONFIG_PREFIX) / r t a i−c o n f i g −−l x r t−c f l a g s ‘ \
12 −D_REENTRANT −I i n c l u d e
13 LDFLAGS=− l p t h r e a d ‘ $ (RTAI_CONFIG_PREFIX) / r t a i−c o n f i g −−l x r t−l d f l a g s ‘
14 TARFLAGS=−c p z v f
15 ADDLIBS=
16 DIST=rt_comm . t g z
17 SRCDIST= r t_comm_src . t g z
18 RTNET_SOURCE_BIN= r t ne t _c omm _s ou r ce
19 RTNET_SOURCE_OBJ= r t_comm_source . o r t _comm_er ro r . o r t _ c o m m _ r t n e t . o
20 RTNET_SINK_BIN= r tne t_comm_s ink
21 RTNET_SINK_OBJ= r t_comm_sink . o r t _comm_er ro r . o r t _ c o m m _ r t n e t . o
22 RTNET_PARPORT_BIN= r t n e t _ p a r p o r t
23 RTNET_PARPORT_OBJ= r t n e t _ p a r p o r t . o r t _comm_er ro r . o r t _ c o m m _ r t n e t . o
24 QOS_SOURCE_BIN=qos_comm_source
25 QOS_SOURCE_OBJ= r t_comm_source . o r t _comm_er ro r . o rt_comm_qos . o
26 QOS_SINK_BIN=qos_comm_sink
27 QOS_SINK_OBJ= r t_comm_sink . o r t _comm_er ro r . o rt_comm_qos . o
28
29 a l l : r t n e t qos
30 r t n e t : CFLAGS+=−I / u s r / l o c a l / r t n e t / i n c l u d e
31 r t n e t : $ (RTNET_SOURCE_BIN) $ (RTNET_SINK_BIN) $ (RTNET_PARPORT_BIN)
32 qos : $ (QOS_SOURCE_BIN) $ (QOS_SINK_BIN)
33 debug : CFLAGS+=−DDEBUG −g
34 debug : a l l
35 s t a t i c : LDFLAGS+=− s t a t i c
36 s t a t i c : ADDLIBS+=/ u s r / l o c a l / r t a i / l i b / l i b l x r t . a / u s r / l i b / l i b p t h r e a d . a / u s r / l i b / l i b p t h r e a d _ n o n s h a r e d

. a
37 s t a t i c : a l l
38 $ (STRIP) $ (RTNET_PARPORT_BIN) $ (RTNET_SOURCE_BIN) $ (RTNET_SINK_BIN) $ (QOS_SINK_BIN) $ (

QOS_SINK_BIN)
39 d i s t : a l l
40 $ (TAR) $ (TARFLAGS) $ (DIST) $ (RTNET_PARPORT_BIN) $ (RTNET_SOURCE_BIN) $ (RTNET_SINK_BIN) $ (

QOS_SOURCE_BIN) $ (QOS_SINK_BIN)
41 s r c d i s t :
42 −$ (TAR) $ (TARFLAGS) $ (SRCDIST) ∗ . c ∗ . h i n c l u d e /∗
43
44 %.o : %.c i n c l u d e / p a r p o r t . h i n c l u d e / r t _ co m m_ b ac k en d _ i f c . h
45 gcc $ (CFLAGS) $< −o $@
46
47 $ (RTNET_PARPORT_BIN) : $ (RTNET_PARPORT_OBJ)
48 gcc $ (LDFLAGS) −o $ (RTNET_PARPORT_BIN) $ (RTNET_PARPORT_OBJ) $ (ADDLIBS)
49
50 $ (RTNET_SOURCE_BIN) : $ (RTNET_SOURCE_OBJ)
51 gcc $ (LDFLAGS) −o $ (RTNET_SOURCE_BIN) $ (RTNET_SOURCE_OBJ) $ (ADDLIBS)
52
53 $ (RTNET_SINK_BIN) : $ (RTNET_SINK_OBJ)
54 gcc $ (LDFLAGS) −o $ (RTNET_SINK_BIN) $ (RTNET_SINK_OBJ) $ (ADDLIBS)
55
56 $ (QOS_SOURCE_BIN) : $ (QOS_SOURCE_OBJ)
57 gcc $ (LDFLAGS) −o $ (QOS_SOURCE_BIN) $ (QOS_SOURCE_OBJ) $ (ADDLIBS)
58
59 $ (QOS_SINK_BIN) : $ (QOS_SINK_OBJ)
60 gcc $ (LDFLAGS) −o $ (QOS_SINK_BIN) $ (QOS_SINK_OBJ) $ (ADDLIBS)
61
62 . PHONY: c l e a n
63
64 c l e a n :
65 −rm ∗ . o $ (RTNET_PARPORT_BIN) $ (RTNET_SOURCE_BIN) $ (RTNET_SINK_BIN) $ (QOS_SOURCE_BIN) $ (

QOS_SINK_BIN) $ (DIST) $ (SRCDIST)

Listing A.3: Makefile

A.1.1.2 The program logic

1 # i f n d e f __PARPORT_H__
2 # d e f i n e __PARPORT_H__ 1
3
4 /∗∗ \ b r i e f P a r a l l e l Por t Debugging

A.1. MANAGING RTAI AND RTNET 82

5 ∗ \ a u t h o r R a i ne r P o i s e l (tm031051)
6 ∗ \ d a t e March 23 , 2007
7 ∗
8 ∗ Macros f o r d i s p l a y i n g e v e n t s
9 ∗ on t h e p a r a l l e l p o r t o f a PC

10 ∗ /
11
12 # i n c l u d e < r t a i _ l x r t . h> /∗ i o p l () ∗ /
13 # i n c l u d e <asm / i o . h>
14 # d e f i n e USE_PARPORT 1 /∗ s e t t o 0 f o r n o t u s i n t t h e p a r p o r t ∗ /
15 # d e f i n e PARPORT_BASE 0 x378 /∗ / dev / p r i n t e r s / 0 ∗ /
16 # d e f i n e NUM_PINS 8
17 # d e f i n e PIN_OFFSET 1 /∗ Pin 1 t o 8 ∗ /
18 # d e f i n e PRIVILEGE_LEVEL 3 /∗ Ring 3 ∗ /
19
20 /∗∗ \ d e f INIT_PARPORT ()
21 ∗ I n i t i a l i z e s p a r a l l e l p o r t f o r user−space usage
22 ∗ /
23 # i f USE_PARPORT == 1
24 # d e f i n e INIT_PARPORT () \
25 s t a t i c u n s i g n e d l V a l = 0 ; \
26 i o p l (PRIVILEGE_LEVEL) ; \
27 ou tb (0 , PARPORT_BASE + 2) ;
28 # e l s e
29 # d e f i n e INIT_PARPORT ()
30 # e n d i f
31
32 /∗∗ \ d e f TOGGLE_PIN (p i n)
33 ∗ T o g g l e s a p a r a l l e l data−p o r t p i n
34 ∗ /
35 # i f USE_PARPORT == 1
36 # d e f i n e TOGGLE_PIN(p i n) \
37 l V a l = i n b (PARPORT_BASE) ; \
38 l V a l ^= (1 << (p i n % NUM_PINS)) ; \
39 ou tb (lVal , PARPORT_BASE) ;
40 # e l s e
41 # d e f i n e TOGGLE_PIN(p i n)
42 # e n d i f
43
44 # e n d i f

Listing A.4: parport.h

1 /∗∗ \ b r i e f RT Communicat ion s o u r c e
2 ∗ \ a u t h o r R a i ne r P o i s e l (tm031051)
3 ∗ \ d a t e March 31 , 2007
4 ∗
5 ∗ The s o u r c e f o r r e a l−t i m e UDP communica t ion
6 ∗ I n v o c a t i o n example : . / r t_comm_source −−s e r v e r−p o r t 1234 −−s e r v e r−i p 1 0 . 0 . 0 . 1 −−message

PIN1 −−t o g g l e−p i n 2 −−num−messages 20 −−num−f a i l u r e−messages 10 −−t x−d e l a y 5000000
7 ∗ /
8
9 /∗ s t a n d a r d C−API ∗ /

10 # i n c l u d e < s t d l i b . h>
11 # i n c l u d e < s t d i o . h>
12 # i n c l u d e < g e t o p t . h>
13 # i n c l u d e < s t r i n g . h>
14
15 /∗ Linux s p e c i f i c ∗ /
16 # i n c l u d e < sched . h>
17 # i n c l u d e < s i g n a l . h>
18 # i n c l u d e < s y s / t y p e s . h>
19 # i n c l u d e < s y s / mman . h>
20 # i n c l u d e < s y s / s t a t . h>
21
22 /∗ UDP s p e c i f i c s ∗ /
23 # i n c l u d e < n e t d b . h>
24 # i n c l u d e < a r p a / i n e t . h>
25 # i n c l u d e < n e t i n e t / i n . h>
26
27 /∗ RTAI and RTnet s p e c i f i c s ∗ /
28 # i n c l u d e < r t a i _ l x r t . h>
29
30 /∗ own i n c l u d e s ∗ /
31 # i n c l u d e " r t_comm_backend_ i fc . h "
32 # i n c l u d e " r t _comm_er ro r . h "
33 # i n c l u d e " p a r p o r t . h "
34
35 /∗ −−−−− D e f i n e s −−−−− ∗ /
36 # d e f i n e MAX_MSG_SIZE 512
37 # d e f i n e DEFAULT_STATIC_STRING_LENGTH 255
38 # d e f i n e RT_TASK_ID 292
39 # d e f i n e DEFAULT_MESSAGE " PIN1 "
40 # d e f i n e DEFAULT_TOGGLE_PIN 1
41 # d e f i n e DEFAULT_PORT 1234
42 # d e f i n e DEFAULT_NUM_RT_MESSAGES 10000L
43 # d e f i n e DEFAULT_NUM_SEND_FAILURES 1000000L
44 # d e f i n e DEFAULT_TX_DELAY 50000000 /∗ 5000000 ns = 5ms ∗ /

A.1. MANAGING RTAI AND RTNET 83

45
46 /∗ −−−−− t y p e d e f s −−−−− ∗ /
47
48 /∗ −−−−− P r o t o t y p e s −−−−− ∗ /
49
50 /∗∗ \ f n v o i d usage (char c o n s t∗ pProgramName) ;
51 ∗ \ b r i e f p r i n t how t o use t h i s program
52 ∗ \ param pProgramName t h e name o f t h i s b i n a r y
53 ∗ \ r e t u r n n o t h i n g
54 ∗ /
55 s t a t i c vo id usage (c h a r c o n s t∗ pProgramName) ;
56
57 /∗ −−−−− I m p l e m e n t a t i o n −−−−− ∗ /
58 i n t main (i n t pArgc , c h a r∗ pArgv [])
59 {
60 RT_TASK∗ l C l i e n t T a s k = NULL;
61 RTIME l D e l a y = DEFAULT_TX_DELAY;
62 c h a r lProgramName [DEFAULT_STATIC_STRING_LENGTH] ;
63 i n t lSocke tFD = 0 ;
64 i n t l R e t u r n = 0 ;
65 long long lMaxCnt = DEFAULT_NUM_RT_MESSAGES, l C n t = 0 , lMaxFa i lCn t =

DEFAULT_NUM_SEND_FAILURES,
66 l F a i l C n t = 0 ;
67 s t a t i c s t r u c t s o c k a d d r _ i n lLoca lAddr , lRemoteAddr ;
68 c h a r lMessage [DEFAULT_STATIC_STRING_LENGTH] ;
69 s h o r t l P a r p o r t P i n = DEFAULT_TOGGLE_PIN ;
70 s t r u c t backend_desc lBackend ;
71
72 /∗ command−l i n e p a r s i n g v a r i a b l e s ∗ /
73 i n t l O p t i o n I n d e x = 0 ;
74 s t r u c t o p t i o n l L o n g O p t i o n s [] =
75 {
76 {" l o c a l−i p " , r e q u i r e d _ a r g u m e n t , 0 , ’ i ’ } ,
77 {" l o c a l−p o r t " , r e q u i r e d _ a r g u m e n t , 0 , ’ p ’ } ,
78 {" s e r v e r−i p " , r e q u i r e d _ a r g u m e n t , 0 , ’ j ’ } ,
79 {" s e r v e r−p o r t " , r e q u i r e d _ a r g u m e n t , 0 , ’ q ’ } ,
80 {" message " , r e q u i r e d _ a r g u m e n t , 0 , ’m’ } ,
81 {" t o g g l e−p i n " , r e q u i r e d _ a r g u m e n t , 0 , ’ t ’ } ,
82 {"num−messages " , r e q u i r e d _ a r g u m e n t , 0 , ’ n ’ } ,
83 {"num−f a i l u r e−messages " , r e q u i r e d _ a r g u m e n t , 0 , ’ f ’ } ,
84 {" tx−d e l a y " , r e q u i r e d _ a r g u m e n t , 0 , ’ d ’ } ,
85 {" h e l p " , no_argument , 0 , ’ h ’ } ,
86 { 0 , 0 , 0 , 0 }
87 } ;
88
89 /∗ i n i t i a l i z e p a r a l l e l p o r t debugg ing ∗ /
90 INIT_PARPORT ()
91
92 /∗ i n i t i a l i z e v a r i a b l e s w i t h f u n c t i o n s i f n e c e s s a r y ∗ /
93 i n i t _ b a c k e n d (& lBackend) ;
94 memset(& lLoca lAddr , 0 , s i z e o f (s t r u c t s o c k a d d r _ i n)) ;
95 l L o c a l A d d r . s i n _ f a m i l y = AF_INET ;
96 l L o c a l A d d r . s i n _ a d d r . s _ a d d r = INADDR_ANY;
97 /∗ l o c a l p o r t i s chosen by t h e o p e r a t i n g s y s t e m (l i n u x) ∗ /
98 memset(&lRemoteAddr , 0 , s i z e o f (s t r u c t s o c k a d d r _ i n)) ;
99 lRemoteAddr . s i n _ f a m i l y = AF_INET ;

100 lRemoteAddr . s i n _ a d d r . s _ a d d r = INADDR_ANY;
101 lRemoteAddr . s i n _ p o r t = h t o n s (DEFAULT_PORT) ;
102
103 s t r n c p y (lProgramName , pArgv [0] , DEFAULT_STATIC_STRING_LENGTH) ;
104 s t r n c p y (lMessage , DEFAULT_MESSAGE, DEFAULT_STATIC_STRING_LENGTH) ;
105
106 /∗ do ing t h e command−l i n e p a r s i n g ∗ /
107 w h i l e (1)
108 {
109 l R e t u r n = g e t o p t _ l o n g (pArgc , pArgv , " i : p : j : q :m: t : f : n : d : h " , lLongOpt ions ,& l O p t i o n I n d e x

) ;
110 i f (l R e t u r n == −1) /∗ a l l o p t i o n s p ar se d ∗ /
111 b r e a k ;
112
113 s w i t c h (l R e t u r n)
114 {
115 c a s e ’p ’ :
116 /∗ p o r t t o b ind t o ∗ /
117 l L o c a l A d d r . s i n _ p o r t = h t o n s (s t r t o l (o p t a r g , NULL, 1 0)) ;
118 b r e a k ;
119 c a s e ’q ’ :
120 /∗ s e r v e r p o r t ∗ /
121 lRemoteAddr . s i n _ p o r t = h t o n s (s t r t o l (o p t a r g , NULL, 1 0)) ;
122 b r e a k ;
123 c a s e ’ i ’ :
124 /∗ i p a d d r e s s t o b ind t o ∗ /
125 l L o c a l A d d r . s i n _ a d d r . s _ a d d r = i n e t _ a d d r (o p t a r g) ;
126 b r e a k ;
127 c a s e ’ j ’ :
128 /∗ s e r v e r i p a d d r e s s ∗ /
129 lRemoteAddr . s i n _ a d d r . s _ a d d r = i n e t _ a d d r (o p t a r g) ;
130 b r e a k ;
131 c a s e ’m’ :
132 /∗ message t o send ∗ /

A.1. MANAGING RTAI AND RTNET 84

133 s t r n c p y (lMessage , o p t a r g , DEFAULT_STATIC_STRING_LENGTH) ;
134 b r e a k ;
135 c a s e ’ t ’ :
136 /∗ p a r a l l e l data−p o r t t o t o g g l e ∗ /
137 l P a r p o r t P i n = s t r t o l (o p t a r g , NULL, 1 0) ;
138 b r e a k ;
139 c a s e ’n ’ :
140 /∗ max number o f messages t o t r a n s m i t ∗ /
141 lMaxCnt = s t r t o l (o p t a r g , NULL, 1 0) ;
142 b r e a k ;
143 c a s e ’ f ’ :
144 /∗ maximum t r a n s m i s s i o n e r r o r s ∗ /
145 lMaxFa i lCn t = s t r t o l (o p t a r g , NULL, 1 0) ;
146 b r e a k ;
147 c a s e ’d ’ :
148 /∗ d e l a y be tween t r a n s m i s s i o n o f p a c k e t s ∗ /
149 l D e l a y = s t r t o l (o p t a r g , NULL, 1 0) ;
150 b r e a k ;
151 c a s e ’h ’ :
152 /∗ h e l p s t r i n g ∗ /
153 usage (lProgramName) ;
154 r e t u r n EXIT_SUCCESS ;
155 b r e a k ;
156 c a s e ’ ? ’ :
157 /∗ unknown argument ; e r r o r message i s d i s p l a y e d by g e t o p t ∗ /
158 r e t u r n EXIT_FAILURE ;
159 d e f a u l t :
160 a b o r t () ;
161 }
162 }
163
164 /∗ a l l o c a t e memory o n l y from RAM, no pag ing ∗ /
165 m l o c k a l l (MCL_CURRENT | MCL_FUTURE) ;
166
167 /∗ c r e a t e t h e s o c k e t ∗ /
168 lSocke tFD = lBackend . s o c k e t (AF_INET ,SOCK_DGRAM, 0) ;
169 i f (lSocke tFD < 0)
170 {
171 f p r i n t f (s t d e r r , " E r r o r open ing t h e s o c k e t . \ n ") ;
172 r e t u r n EXIT_SUCCESS ;
173 }
174
175 /∗ p r i o r i t y = 1; s t a c k _ s i z e = 0; max_msg_s ize = 0 ∗ /
176 l C l i e n t T a s k = r t _ t a s k _ i n i t ((RT_TASK_ID) , 1 , 0 , 0) ;
177 i f (l C l i e n t T a s k == NULL)
178 b a i l (" E r r o r d u r i n g i n i t i a l i z a t i o n o f t h e m a s t e r t a s k . \ n ") ;
179
180 /∗ s w i t c h i n t o hard r e a l−t i m e mode ∗ /
181 lBackend . r e q u e s t _ h a r d _ r e a l t i m e () ;
182
183 /∗ b ind t h e s o c k e t t o a l o c a l a d d r e s s ∗ /
184 l R e t u r n = lBackend . b ind (lSocketFD , (s t r u c t s o c k a d d r ∗)&lLoca lAddr , s i z e o f (s t r u c t s o c k a d d r _ i n

)) ;
185 i f (l R e t u r n < 0)
186 b a i l (" r t _ d e v _ b i n d () r e t u r n e d an e r r o r . \ n ") ;
187
188 /∗ r t _ d e v _ c o n n e c t () s p e c i f i e s t h e d e s t i n a t i o n a d d r e s s f o r t h e s o c k e t ∗ /
189 lBackend . c o n n e c t (lSocketFD , (s t r u c t s o c k a d d r ∗) &lRemoteAddr , s i z e o f (s t r u c t s o c k a d d r _ i n)) ;
190
191 w h i l e (1)
192 {
193 /∗ send t h e message ∗ /
194 i f (lBackend . send (lSocketFD , lMessage , s t r n l e n (lMessage , DEFAULT_STATIC_STRING_LENGTH)

+1 ,0) > 0)
195 {
196 TOGGLE_PIN(l P a r p o r t P i n − 1)
197
198 i f (l C n t < (lMaxCnt − 1))
199 {
200 ++ l C n t ;
201 }
202 e l s e
203 {
204 /∗ g e t o u t o f t h i s l oop s i n c e t h e r e i s no s e r i a l communica t ion
205 ∗ p o s s i b l e i n hard r e a l−t i m e mode
206 ∗ /
207 b r e a k ;
208 }
209 }
210 e l s e
211 {
212 i f (l F a i l C n t < (lMaxFa i lCn t − 1))
213 {
214 ++ l F a i l C n t ;
215 }
216 e l s e
217 {
218 b r e a k ;
219 }
220 }

A.1. MANAGING RTAI AND RTNET 85

221 r t _ b u s y _ s l e e p (nano2coun t (l D e l a y)) ; /∗ pass c o n t r o l t o t h e RTAI s c h e d u l e r ∗ /
222 }
223
224 /∗ s w i t c h t o s o f t r e a l−t i m e ∗ /
225 lBackend . r e l e a s e _ h a r d _ r e a l t i m e () ;
226
227 /∗ c l o s e s o c k e t ∗ /
228 lBackend . c l o s e (lSocke tFD) ;
229
230 /∗ d e l e t e t h e t a s k ∗ /
231 r t _ t a s k _ d e l e t e (l C l i e n t T a s k) ;
232
233 f p r i n t f (s t d o u t , " \ n S t a t i s t i c s : \ n "
234 "===========\n ") ;
235 f p r i n t f (s t d o u t , " S u c c e s s f u l l y t r a n s m i t t e d messages : %l l d \ n "
236 " F a i l u r e s : %l l d \ n " ,
237 l C n t +1 , l F a i l C n t) ;
238
239 r e t u r n EXIT_SUCCESS ;
240 }
241
242 s t a t i c vo id usage (c h a r c o n s t∗ pProgramName)
243 {
244 f p r i n t f (s t d o u t ,"% s [−−l o c a l−i p i p] [−−l o c a l−p o r t p o r t] [−−s e r v e r−p o r t p o r t] \ n "
245 "[−−s e r v e r−i p i p] [−−message message] [−−t o g g l e−p i n p i n] \ n "
246 " [−−num−messages num] [−−num−f a i l u r e−messages num] \ n "
247 " [−−tx−d e l a y d e l a y] \ n \ n "
248 " p o r t . . . p o r t t o send messages o r t o b ind (l o c a l l y) t o \ n "
249 " i p . . . ip−a d d r e s s t o send messages o r t o b ind (l o c a l l y) t o \ n "
250 " message . . . message t o send \ n "
251 " num . . . number o f messages \ n "
252 " p i n . . . p a r a l l e l da t a−p o r t p i n t o t o g g l e on message t r a n s m i s s i o n \ n "
253 " d e l a y . . . d e l a y between t r a n s m i s s i o n o f p a c k e t s \ n \ n " ,
254 pProgramName) ;
255 }

Listing A.5: rt_comm_source.c

1 /∗∗ \ b r i e f RT Communicat ion s i n k
2 ∗ \ a u t h o r R a i ne r P o i s e l (tm031051)
3 ∗ \ d a t e March 31 , 2007
4 ∗
5 ∗ The s i n k (s e r v e r) f o r r e a l−t i m e UDP communica t ion
6 ∗ I n v o c a t i o n example : . / r t_comm_s ink −−p o r t 1234 −−q u i t−message 42 −−message1 PIN1
7 ∗ /
8
9 /∗ s t a n d a r d C−API ∗ /

10 # i n c l u d e < s t d l i b . h>
11 # i n c l u d e < s t d i o . h>
12 # i n c l u d e < g e t o p t . h>
13 # i n c l u d e < s t r i n g . h>
14
15 /∗ Linux s p e c i f i c ∗ /
16 # i n c l u d e < sched . h>
17 # i n c l u d e < s i g n a l . h>
18 # i n c l u d e < s y s / t y p e s . h>
19 # i n c l u d e < s y s / mman . h>
20 # i n c l u d e < s y s / s t a t . h>
21
22 /∗ UDP s p e c i f i c s ∗ /
23 # i n c l u d e < n e t d b . h>
24 # i n c l u d e < a r p a / i n e t . h>
25 # i n c l u d e < n e t i n e t / i n . h>
26
27 /∗ RTAI s p e c i f i c s ∗ /
28 # i n c l u d e < r t a i _ l x r t . h>
29
30 /∗ own i n c l u d e s ∗ /
31 # i n c l u d e " r t_comm_backend_ i fc . h "
32 # i n c l u d e " r t _comm_er ro r . h "
33 # i n c l u d e " p a r p o r t . h "
34
35 /∗ −−−−− D e f i n e s −−−−− ∗ /
36 # d e f i n e MAX_MSG_SIZE 8192
37 # d e f i n e DEFAULT_PORT 1234
38 # d e f i n e DEFAULT_STATIC_STRING_LENGTH 255
39 # d e f i n e RT_TASK_ID 292 + 1
40 # d e f i n e QUIT_STRING "You have no chance t o s u r v i v e make your t ime . "
41 # d e f i n e PIN_MESSAGE " PIN "
42
43 /∗ −−−−− t y p e d e f s −−−−− ∗ /
44
45 /∗ −−−−− P r o t o t y p e s −−−−− ∗ /
46
47 /∗∗ \ f n v o i d usage (char c o n s t∗ pProgramName) ;
48 ∗ \ b r i e f p r i n t how t o use t h i s program
49 ∗ \ param pProgramName t h e name o f t h i s b i n a r y
50 ∗ \ r e t u r n n o t h i n g

A.1. MANAGING RTAI AND RTNET 86

51 ∗ /
52 s t a t i c vo id usage (c h a r c o n s t∗ pProgramName) ;
53
54 /∗ −−−−− I m p l e m e n t a t i o n −−−−− ∗ /
55 i n t main (i n t pArgc , c h a r∗ pArgv [])
56 {
57 RT_TASK∗ l S e r v e r T a s k = NULL;
58 c h a r lMsg [MAX_MSG_SIZE] ;
59 c h a r lProgramName [DEFAULT_STATIC_STRING_LENGTH] ,
60 l Q u i t M e s s a g e [DEFAULT_STATIC_STRING_LENGTH] ;
61 i n t lSocke tFD = 0 ;
62 i n t l R e t u r n = 0 , l C n t = 0 ;
63 s t a t i c s t r u c t s o c k a d d r _ i n l L o c a l A d d r ;
64 long long lNumCl ien tMessages [NUM_PINS] ; /∗ number o f r e c e i v e d messages ∗ /
65 c h a r l P i n M e s s a g e s [NUM_PINS] [DEFAULT_STATIC_STRING_LENGTH] ;
66 s t r u c t backend_desc lBackend ;
67
68 /∗ command−l i n e p a r s i n g v a r i a b l e s ∗ /
69 i n t l O p t i o n I n d e x = 0 ;
70 s t r u c t o p t i o n l L o n g O p t i o n s [] =
71 {
72 {" p o r t " , r e q u i r e d _ a r g u m e n t , 0 , ’ p ’ } ,
73 {" q u i t−message " , r e q u i r e d _ a r g u m e n t , 0 , ’ q ’ } ,
74 {" h e l p " , no_argument , 0 , ’ h ’ } ,
75 { 0 , 0 , 0 , 0 }
76 } ;
77
78 /∗ i n i t i a l i z e p a r a l l e l p o r t debugg ing ∗ /
79 INIT_PARPORT ()
80
81 f o r (l C n t = 0 ; l C n t < NUM_PINS ; ++ l C n t)
82 {
83 lNumCl ien tMessages [l C n t] = 0 ;
84 s n p r i n t f (l P i n M e s s a g e s [l C n t] , DEFAULT_STATIC_STRING_LENGTH,"% s%d " ,
85 PIN_MESSAGE , l C n t + PIN_OFFSET) ;
86 }
87
88 /∗ i n i t i a l i z e v a r i a b l e s w i t h f u n c t i o n s i f n e c e s s a r y ∗ /
89 i n i t _ b a c k e n d (& lBackend) ; /∗ i n i t f u n c t i o n p o i n t e r s o f t h e backend ∗ /
90 memset(& lLoca lAddr , 0 , s i z e o f (s t r u c t s o c k a d d r _ i n)) ;
91 l L o c a l A d d r . s i n _ f a m i l y = AF_INET ;
92 l L o c a l A d d r . s i n _ a d d r . s _ a d d r = INADDR_ANY;
93 l L o c a l A d d r . s i n _ p o r t = h t o n s (DEFAULT_PORT) ;
94
95 s t r c p y (lProgramName , pArgv [0]) ;
96 s t r n c p y (lQui tMessage , QUIT_STRING , DEFAULT_STATIC_STRING_LENGTH) ;
97
98 /∗ do ing t h e command−l i n e p a r s i n g ∗ /
99 w h i l e (1)

100 {
101 l R e t u r n = g e t o p t _ l o n g (pArgc , pArgv , " p : q : h " , lLongOpt ions ,& l O p t i o n I n d e x) ;
102 i f (l R e t u r n == −1) /∗ a l l o p t i o n s p ar se d ∗ /
103 b r e a k ;
104
105 s w i t c h (l R e t u r n)
106 {
107 c a s e ’p ’ :
108 /∗ p o r t t o l i s t e n on ∗ /
109 l L o c a l A d d r . s i n _ p o r t = h t o n s (s t r t o l (o p t a r g , NULL, 1 0)) ;
110 b r e a k ;
111 c a s e ’q ’ :
112 s t r n c p y (lQui tMessage , o p t a r g , DEFAULT_STATIC_STRING_LENGTH) ;
113 /∗ message t o s e t p in2 o f t h e p a r a l l e l data−p o r t ∗ /
114 b r e a k ;
115 c a s e ’h ’ :
116 /∗ d i s p l a y h e l p ∗ /
117 usage (lProgramName) ;
118 r e t u r n EXIT_SUCCESS ;
119 c a s e ’ ? ’ :
120 /∗ unknown argument ; e r r o r message i s d i s p l a y e d by g e t o p t ∗ /
121 r e t u r n EXIT_FAILURE ;
122 d e f a u l t :
123 a b o r t () ;
124 }
125 }
126
127 /∗ a l l o c a t e memory o n l y from RAM, no pag ing ∗ /
128 m l o c k a l l (MCL_CURRENT | MCL_FUTURE) ;
129
130 /∗ c r e a t e t h e s o c k e t ∗ /
131 lSocke tFD = lBackend . s o c k e t (AF_INET ,SOCK_DGRAM, 0) ;
132 i f (lSocke tFD < 0)
133 {
134 f p r i n t f (s t d e r r , " E r r o r open ing t h e s o c k e t . \ n ") ;
135 r e t u r n EXIT_SUCCESS ;
136 }
137
138 /∗ p r i o r i t y = 1; s t a c k _ s i z e = 0; max_msg_s ize = 0 ∗ /
139 l S e r v e r T a s k = r t _ t a s k _ i n i t ((RT_TASK_ID) , 1 , 0 , 0) ;
140 i f (l S e r v e r T a s k == NULL)

A.1. MANAGING RTAI AND RTNET 87

141 b a i l (" E r r o r d u r i n g i n i t i a l i z a t i o n o f t h e m a s t e r t a s k . \ n ") ;
142
143 f p r i n t f (s t d o u t , " S t a r t i n g ha rd r e a l−t ime r e c e i v e p r o c e s s . A l l your base a r e b e l ong t o us ! \ n

") ;
144 f f l u s h (s t d o u t) ;
145
146 /∗ s w i t c h i n t o hard r e a l−t i m e mode ∗ /
147 lBackend . r e q u e s t _ h a r d _ r e a l t i m e () ;
148
149 /∗ b ind t h e s o c k e t t o a l o c a l a d d r e s s ∗ /
150 l R e t u r n = lBackend . b ind (lSocketFD , (s t r u c t s o c k a d d r ∗)&lLoca lAddr , s i z e o f (s t r u c t s o c k a d d r _ i n

)) ;
151 i f (l R e t u r n < 0)
152 b a i l (" b ind () r e t u r n e d an e r r o r . \ n ") ;
153
154 w h i l e (1)
155 {
156 /∗ b l o c k u n t i l a p a c k e t i s r e c e i v e d ∗ /
157 l R e t u r n = lBackend . r e c v (lSocketFD , lMsg , s i z e o f (lMsg) , 0) ;
158
159 /∗ q u i t on e r r o r ∗ /
160 i f (l R e t u r n < 0)
161 {
162 b r e a k ;
163 }
164 /∗ q u i t i f r e q u e s t e d ∗ /
165 e l s e i f ((s t rncmp (lMsg , lQui tMessage , DEFAULT_STATIC_STRING_LENGTH) == 0) | |
166 (s t rncmp (lMsg , " 4 2 " , DEFAULT_STATIC_STRING_LENGTH) == 0)) /∗

emergency e x i t f e a t u r e ∗ /
167 {
168 b r e a k ;
169 }
170 /∗ s e t p i n s i f r e q u e s t e d ∗ /
171 f o r (l C n t = 0 ; l C n t < NUM_PINS ; ++ l C n t)
172 {
173 i f (s t rncmp (lMsg , l P i n M e s s a g e s [l C n t] , DEFAULT_STATIC_STRING_LENGTH) == 0)
174 {
175 ++ lNumCl ien tMessages [l C n t] ;
176 TOGGLE_PIN(l C n t) ;
177 b r e a k ;
178 }
179 }
180 /∗ i g n o r e a l l o t h e r messages ∗ /
181 }
182
183 /∗ s w i t c h t o s o f t r e a l−t i m e mode t o be a b l e t o p l a c e sys tem−c a l l s ∗ /
184 lBackend . r e l e a s e _ h a r d _ r e a l t i m e () ;
185
186 /∗ c l o s e t h e s o c k e t ∗ /
187 lBackend . c l o s e (lSocke tFD) ;
188
189 /∗ q u i t t h e r e a l−t i m e t a s k ∗ /
190 r t _ t a s k _ d e l e t e (l S e r v e r T a s k) ;
191
192 f p r i n t f (s t d o u t , " Qu i t message r e c e i v e d , s h u t t i n g down t h e r e f o r e . For g r e a t j u s t i c e . \ n ") ;
193
194 f p r i n t f (s t d o u t , " \ n S t a t i s t i c s : \ n "
195 "===========\n ") ;
196 f o r (l C n t = 0 ; l C n t < NUM_PINS ; ++ l C n t)
197 {
198 f p r i n t f (s t d o u t , "%s : %l l d \ n " , l P i n M e s s a g e s [l C n t] , lNumCl ien tMessages [l C n t]) ;
199 }
200 f p r i n t f (s t d o u t , " 1 Qu i t message r e c e i v e d . \ n \ n ") ;
201
202 r e t u r n EXIT_SUCCESS ;
203 }
204
205 s t a t i c vo id usage (c h a r c o n s t∗ pProgramName)
206 {
207 f p r i n t f (s t d o u t ,"% s [−−p o r t p o r t] [−−q u i t−message message] \ n \ n "
208 " p o r t . . . p o r t t o l i s t e n on \ n "
209 " q u i t−message . . . message t h a t c a u s e s t h e program t o q u i t \ n \ n " ,
210 pProgramName) ;
211 }

Listing A.6: rt_comm_sink.c

A.1.1.3 The backends and their interface

1 # i f n d e f __RT_COMM_BACKEND_IFC_H__
2 # d e f i n e __RT_COMM_BACKEND_IFC_H__ 1
3
4 /∗∗ \ b r i e f RT Communicat ion I n t e r f a c e s
5 ∗ \ a u t h o r R a i ne r P o i s e l (tm031051)
6 ∗ \ d a t e March 31 , 2007

A.1. MANAGING RTAI AND RTNET 88

7 ∗
8 ∗ I n t e r f a c e s f o r communica t ion backends
9 ∗ /

10
11 /∗ i n c l u d e f i l e s f o r da ta t y p e s ∗ /
12 # i n c l u d e < s y s / t y p e s . h>
13
14 /∗∗ \ s t r u c t b a c k e n d _ s t r u c t u r e
15 ∗ \ b r i e f c o n t a i n s f u n c t i o n p o i n t e r s t o t h e backend−f u n c t i o n s
16 ∗ /
17 s t r u c t backend_desc
18 {
19 /∗ s i n k p a r t ∗ /
20 s s i z e _ t (∗ r e c v) (i n t pSockFD , vo id∗ pBuf , s i z e _ t pLen , i n t p F l a g s) ;
21
22 /∗ s o u r c e p a r t ∗ /
23 i n t (∗ c o n n e c t) (i n t pSockFD , c o n s t s t r u c t s o c k a d d r∗ pServerAddr , s o c k l e n _ t pAddrLen) ;
24 s s i z e _ t (∗ send) (i n t pSockFD , c o n s t vo id∗ pBuf , s i z e _ t pLen , i n t p F l a g s) ;
25
26 /∗ common p a r t ∗ /
27 i n t (∗ s o c k e t) (i n t pDomain , i n t pType , i n t p P r o t o c o l) ;
28 i n t (∗ c l o s e) (i n t pSockFD) ;
29 i n t (∗ b ind) (i n t pSockFD , c o n s t s t r u c t s o c k a d d r∗ pMyAddr , s o c k l e n _ t pAddrLen) ;
30 vo id (∗ r e q u e s t _ h a r d _ r e a l t i m e) (vo id) ;
31 vo id (∗ r e l e a s e _ h a r d _ r e a l t i m e) (vo id) ;
32 } ;
33
34 /∗∗ \ f n i n t i n i t _ b a c k e n d () ;
35 ∗ \ b r i e f i n i t i a l i z e s t h e backend
36 ∗ \ param pBackend p o i n t e r t o a backend s t r u c t u r e
37 ∗ \ r e t u r n 0 on s u c c e s s ; −1 i n case o f an e r r o r
38 ∗ /
39 e x t e r n i n t i n i t _ b a c k e n d (s t r u c t backend_desc∗ pBackend) ;
40
41 # e n d i f

Listing A.7: rt_comm_backend_ifc.h

1 /∗∗ \ b r i e f RT Communicat ion RTnet module
2 ∗ \ a u t h o r R a i ne r P o i s e l (tm031051)
3 ∗ \ d a t e March 31 , 2007
4 ∗
5 ∗ The RTnet Backend
6 ∗ /
7
8 # i n c l u d e < s t d l i b . h>
9 # i n c l u d e < s t d i o . h>

10
11 /∗ backend s p e c i f i c s ∗ /
12 # i n c l u d e < r t n e t . h>
13
14 /∗ own i n c l u d e f i l e s ∗ /
15 # i n c l u d e " r t_comm_backend_ i fc . h "
16
17 /∗ −−−−− D e f i n e s −−−−− ∗ /
18
19 /∗ −−−−− P r o t o t y p e s −−−−− ∗ /
20 s t a t i c vo id m a k e _ h a r d _ r e a l t i m e (vo id) ;
21 s t a t i c vo id m a k e _ s o f t _ r e a l t i m e (vo id) ;
22 s t a t i c i n t r t _ s o c k e t (i n t pDomain , i n t pType , i n t p P r o t o c o l) ;
23 s t a t i c i n t r t _ c l o s e (i n t pSockFD) ;
24 s t a t i c i n t r t _ b i n d (i n t pSockFD , c o n s t s t r u c t s o c k a d d r∗ pMyAddr , s o c k l e n _ t pAddrLen) ;
25 s t a t i c s s i z e _ t r t _ r e c v _ f u n c (i n t pSockFD , vo id∗ pBuf , s i z e _ t pLen , i n t p F l a g s) ;
26 s t a t i c s s i z e _ t r t _ s e n d _ f u n c (i n t pSockFD , c o n s t vo id∗ pBuf , s i z e _ t pLen , i n t p F l a g s) ;
27 s t a t i c i n t r t _ c o n n e c t (i n t pSockFD , c o n s t s t r u c t s o c k a d d r∗ pServerAddr , s o c k l e n _ t pAddrLen) ;
28
29 /∗ −−−−− t y p e d e f s −−−−− ∗ /
30
31 /∗ −−−−− I m p l e m e n t a t i o n −−−−− ∗ /
32 i n t i n i t _ b a c k e n d (s t r u c t backend_desc∗ pBackend)
33 {
34 /∗ a s s i g n f u n c t i o n p o i n t e r s ∗ /
35 pBackend−>r e q u e s t _ h a r d _ r e a l t i m e = &m a k e _ h a r d _ r e a l t i m e ;
36 pBackend−>r e l e a s e _ h a r d _ r e a l t i m e = &m a k e _ s o f t _ r e a l t i m e ;
37 pBackend−>s o c k e t = &r t _ s o c k e t ;
38 pBackend−>c l o s e = &r t _ c l o s e ;
39 pBackend−>b ind = &r t _ b i n d ;
40 pBackend−>r e c v = &r t _ r e c v _ f u n c ;
41 pBackend−>c o n n e c t = &r t _ c o n n e c t ;
42 pBackend−>send = &r t _ s e n d _ f u n c ;
43
44 r e t u r n 0 ; /∗ s u c c e s s ∗ /
45 }
46
47 s t a t i c vo id m a k e _ h a r d _ r e a l t i m e (vo id)
48 {
49 r t _ m a k e _ h a r d _ r e a l _ t i m e () ;
50 }

A.1. MANAGING RTAI AND RTNET 89

51
52 s t a t i c vo id m a k e _ s o f t _ r e a l t i m e (vo id)
53 {
54 r t _ m a k e _ s o f t _ r e a l _ t i m e () ;
55 }
56
57 s t a t i c i n t r t _ s o c k e t (i n t pDomain , i n t pType , i n t p P r o t o c o l)
58 {
59 r e t u r n r t _ d e v _ s o c k e t (pDomain , pType , p P r o t o c o l) ;
60 }
61
62 s t a t i c i n t r t _ c l o s e (i n t pSockFD)
63 {
64 r e t u r n r t _ d e v _ c l o s e (pSockFD) ;
65 }
66
67 s t a t i c i n t r t _ b i n d (i n t pSockFD , c o n s t s t r u c t s o c k a d d r∗ pMyAddr , s o c k l e n _ t pAddrLen)
68 {
69 r e t u r n r t _ d e v _ b i n d (pSockFD , pMyAddr , pAddrLen) ;
70 }
71
72 s t a t i c s s i z e _ t r t _ r e c v _ f u n c (i n t pSockFD , vo id∗ pBuf , s i z e _ t pLen , i n t p F l a g s)
73 {
74 r e t u r n r t _ d e v _ r e c v (pSockFD , pBuf , pLen , p F l a g s) ;
75 }
76
77 s t a t i c i n t r t _ c o n n e c t (i n t pSockFD , c o n s t s t r u c t s o c k a d d r∗ pServerAddr , s o c k l e n _ t pAddrLen)
78 {
79 r e t u r n r t _ d e v _ c o n n e c t (pSockFD , pServerAddr , pAddrLen) ;
80 }
81
82 s t a t i c s s i z e _ t r t _ s e n d _ f u n c (i n t pSockFD , c o n s t vo id∗ pBuf , s i z e _ t pLen , i n t p F l a g s)
83 {
84 r e t u r n r t _ d e v _ s e n d (pSockFD , pBuf , pLen , p F l a g s) ;
85 }

Listing A.8: rt_comm_rtnet.c

1 /∗∗ \ b r i e f RT Communicat ion QoS module
2 ∗ \ a u t h o r R a i ne r P o i s e l (tm031051)
3 ∗ \ d a t e March 31 , 2007
4 ∗
5 ∗ The QoS Backend
6 ∗ /
7
8 # i n c l u d e < s t d l i b . h>
9 # i n c l u d e < s t d i o . h>

10
11 /∗ backend s p e c i f i c s ∗ /
12 # i n c l u d e < s y s / s o c k e t . h>
13 # i n c l u d e < u n i s t d . h>
14
15 /∗ own i n c l u d e f i l e s ∗ /
16 # i n c l u d e " r t_comm_backend_ i fc . h "
17
18 /∗ −−−−− D e f i n e s −−−−− ∗ /
19
20 /∗ −−−−− P r o t o t y p e s −−−−− ∗ /
21 s t a t i c vo id m a k e _ h a r d _ r e a l t i m e (vo id) ;
22 s t a t i c vo id m a k e _ s o f t _ r e a l t i m e (vo id) ;
23 s t a t i c i n t q o s _ s o c k e t (i n t pDomain , i n t pType , i n t p P r o t o c o l) ;
24 s t a t i c i n t q o s _ c l o s e (i n t pSockFD) ;
25 s t a t i c i n t q o s _ b i n d (i n t pSockFD , c o n s t s t r u c t s o c k a d d r∗ pMyAddr , s o c k l e n _ t pAddrLen) ;
26 s t a t i c s s i z e _ t q o s _ r e c v (i n t pSockFD , vo id∗ pBuf , s i z e _ t pLen , i n t p F l a g s) ;
27 s t a t i c s s i z e _ t qos_send (i n t pSockFD , c o n s t vo id∗ pBuf , s i z e _ t pLen , i n t p F l a g s) ;
28 s t a t i c i n t q o s _ c o n n e c t (i n t pSockFD , c o n s t s t r u c t s o c k a d d r∗ pServerAddr , s o c k l e n _ t pAddrLen) ;
29
30 /∗ −−−−− t y p e d e f s −−−−− ∗ /
31
32 /∗ −−−−− I m p l e m e n t a t i o n −−−−− ∗ /
33 i n t i n i t _ b a c k e n d (s t r u c t backend_desc∗ pBackend)
34 {
35 /∗ a s s i g n f u n c t i o n p o i n t e r s ∗ /
36 pBackend−>r e q u e s t _ h a r d _ r e a l t i m e = &m a k e _ h a r d _ r e a l t i m e ;
37 pBackend−>r e l e a s e _ h a r d _ r e a l t i m e = &m a k e _ s o f t _ r e a l t i m e ;
38 pBackend−>s o c k e t = &q o s _ s o c k e t ;
39 pBackend−>c l o s e = &q o s _ c l o s e ;
40 pBackend−>b ind = &q o s _ b i nd ;
41 pBackend−>r e c v = &q o s _ r e c v ;
42 pBackend−>c o n n e c t = &q o s _ c o n n e c t ;
43 pBackend−>send = &qos_send ;
44
45 r e t u r n 0 ; /∗ s u c c e s s ∗ /
46 }
47
48 s t a t i c vo id m a k e _ h a r d _ r e a l t i m e (vo id)
49 {
50 /∗ n o t h i n g t o do here because normal s y s t e m c a l l s are used

A.1. MANAGING RTAI AND RTNET 90

51 ∗ t h i s i s n o t a l l o w e d w i t h RTAI i n g e n e r a l
52 ∗ /
53
54 }
55
56 s t a t i c vo id m a k e _ s o f t _ r e a l t i m e (vo id)
57 {
58 /∗ s e e m a k e _ h a r d _ r e a l t i m e f o r more i n f o r m a t i o n ∗ /
59 }
60
61 s t a t i c i n t q o s _ s o c k e t (i n t pDomain , i n t pType , i n t p P r o t o c o l)
62 {
63 r e t u r n s o c k e t (pDomain , pType , p P r o t o c o l) ;
64 }
65
66 s t a t i c i n t q o s _ c l o s e (i n t pSockFD)
67 {
68 r e t u r n c l o s e (pSockFD) ;
69 }
70
71 s t a t i c i n t q o s _ b i n d (i n t pSockFD , c o n s t s t r u c t s o c k a d d r∗ pMyAddr , s o c k l e n _ t pAddrLen)
72 {
73 r e t u r n b ind (pSockFD , pMyAddr , pAddrLen) ;
74 }
75
76 s t a t i c s s i z e _ t q o s _ r e c v (i n t pSockFD , vo id∗ pBuf , s i z e _ t pLen , i n t p F l a g s)
77 {
78 r e t u r n r e c v (pSockFD , pBuf , pLen , p F l a g s) ;
79 }
80
81 s t a t i c i n t q o s _ c o n n e c t (i n t pSockFD , c o n s t s t r u c t s o c k a d d r∗ pServerAddr , s o c k l e n _ t pAddrLen)
82 {
83 r e t u r n c o n n e c t (pSockFD , pServerAddr , pAddrLen) ;
84 }
85
86 s t a t i c s s i z e _ t qos_send (i n t pSockFD , c o n s t vo id∗ pBuf , s i z e _ t pLen , i n t p F l a g s)
87 {
88 r e t u r n send (pSockFD , pBuf , pLen , p F l a g s) ;
89 }

Listing A.9: rt_comm_qos.c

A.1.1.4 Error management

1 # i f n d e f __RT_COMM_ERROR_H__
2 # d e f i n e __RT_COMM_ERROR_H__ 1
3
4 /∗∗ \ b r i e f RT Communicat ion Error Module
5 ∗ \ a u t h o r R a i ne r P o i s e l (tm031051)
6 ∗ \ d a t e March 31 , 2007
7 ∗
8 ∗ F u n c t i o n s r e g a r d i n g e r r o r management
9 ∗ /

10
11 /∗∗ \ f n v o i d b a i l (char∗ p B a i l S t r i n g) ;
12 ∗ \ b r i e f b a i l and e x i t p r o c e s s
13 ∗ \ param p B a i l S t r i n g s t r i n g t o b a i l
14 ∗ \ r e t u r n n o t h i n g
15 ∗ /
16 e x t e r n vo id b a i l (c h a r∗ p B a i l S t r i n g) ;
17
18 # e n d i f

Listing A.10: rt_comm_error.h

1 /∗∗ \ b r i e f RT Communicat ion Error Module
2 ∗ \ a u t h o r R a i ne r P o i s e l (tm031051)
3 ∗ \ d a t e March 31 , 2007
4 ∗
5 ∗ RT UDP Error module
6 ∗ /
7
8 # i n c l u d e < s t d l i b . h>
9 # i n c l u d e < s t d i o . h>

10
11 # i n c l u d e " r t _comm_er ro r . h "
12
13 /∗ −−−−− D e f i n e s −−−−− ∗ /
14
15 /∗ −−−−− P r o t o t y p e s −−−−− ∗ /
16
17 /∗ −−−−− t y p e d e f s −−−−− ∗ /

A.1. MANAGING RTAI AND RTNET 91

18
19 /∗ −−−−− I m p l e m e n t a t i o n −−−−− ∗ /
20 vo id b a i l (c h a r∗ p B a i l S t r i n g)
21 {
22 f p r i n t f (s t d e r r , p B a i l S t r i n g) ;
23 f p r i n t f (s t d e r r , " Wi l l e x i t now . \ n ") ;
24 e x i t (EXIT_FAILURE) ;
25 }

Listing A.11: rt_comm_error.c

A.2. CONFIGURATION FILES 92

A.2 Configuration files

A.2.1 Switch configuration

1 !
2 v e r s i o n 1 2 . 0
3 no s e r v i c e pad
4 s e r v i c e t i m e s t a m p s debug up t ime
5 s e r v i c e t i m e s t a m p s l o g up t ime
6 no s e r v i c e password−e n c r y p t i o n
7 !
8 hostname Swi tch
9 !

10 wrr−queue bandwid th 255 255 255 255
11 wrr−queue cos−map 1 0 1 7
12 wrr−queue cos−map 2 2 3
13 wrr−queue cos−map 3 4 5
14 wrr−queue cos−map 4 6
15 !
16 i p subne t−z e r o
17 !
18 i n t e r f a c e F a s t E t h e r n e t 0 / 1
19 s w i t c h p o r t a c c e s s v l a n 20
20 s w i t c h p o r t p r i o r i t y e x t e n d cos 7
21 spann ing−t r e e p o r t f a s t
22 !
23 i n t e r f a c e F a s t E t h e r n e t 0 / 2
24 s w i t c h p o r t a c c e s s v l a n 20
25 s w i t c h p o r t p r i o r i t y e x t e n d cos 3
26 spann ing−t r e e p o r t f a s t
27 !
28 i n t e r f a c e F a s t E t h e r n e t 0 / 3
29 s w i t c h p o r t a c c e s s v l a n 20
30 s w i t c h p o r t mode t r u n k
31 spann ing−t r e e p o r t f a s t
32 !
33 i n t e r f a c e F a s t E t h e r n e t 0 / 4
34 s w i t c h p o r t a c c e s s v l a n 20
35 spann ing−t r e e p o r t f a s t
36 !
37 i n t e r f a c e VLAN20
38 no i p d i r e c t e d−b r o a d c a s t
39 no i p r o u t e−cache
40 shutdown
41 !
42 !
43 l i n e con 0
44 t r a n s p o r t i n p u t none
45 s t o p b i t s 1
46 l i n e v t y 5 15
47 !
48 end

Listing A.12: catalyst_2950.conf

A.2.2 RTnet configuration

1 # ! / b i n / sh
2
3 p r e f i x = " / u s r / l o c a l / r t n e t "
4 e x e c _ p r e f i x =" ${ p r e f i x }"
5 RTNET_MOD=" ${ e x e c _ p r e f i x } / modules "
6 RTIFCONFIG=" ${ e x e c _ p r e f i x } / s b i n / r t i f c o n f i g "
7 RTCFG=" ${ e x e c _ p r e f i x } / s b i n / r t c f g "
8 TDMACFG=" ${ e x e c _ p r e f i x } / s b i n / tdmacfg "
9

10 MODULE_EXT= " . ko "
11 RT_DRIVER=" r t _ 8 1 3 9 t o o "
12 RT_DRIVER_OPTIONS=" c a r d s = 0 , 1 , 0 , 0 "
13 IPADDR = " 1 0 . 0 . 0 . 1 "
14 NETMASK=""
15 RT_LOOPBACK=" yes "
16 RTCAP=" no "
17 STAGE_2_SRC=""
18 STAGE_2_DST=""
19 STAGE_2_CMDS=""
20
21 TDMA_MODE=" m a s t e r "
22 TDMA_SLAVES= " 1 0 . 0 . 0 . 1 0 1 0 . 0 . 0 . 1 1 "
23 TDMA_CYCLE="3000"
24 TDMA_OFFSET="200"

A.2. CONFIGURATION FILES 93

Listing A.13: The master’s rtnet.conf

1 # ! / b i n / sh
2
3 p r e f i x = " / u s r / l o c a l / r t n e t−r t a i −3.5−0.9.8"
4 e x e c _ p r e f i x =" ${ p r e f i x }"
5 RTNET_MOD=" ${ e x e c _ p r e f i x } / modules "
6 RTIFCONFIG=" ${ e x e c _ p r e f i x } / s b i n / r t i f c o n f i g "
7 RTCFG=" ${ e x e c _ p r e f i x } / s b i n / r t c f g "
8 TDMACFG=" ${ e x e c _ p r e f i x } / s b i n / tdmacfg "
9

10 MODULE_EXT= " . ko "
11 RT_DRIVER=" r t _ 8 1 3 9 t o o "
12 RT_DRIVER_OPTIONS=" c a r d s = 1 , 0 , 0 , 0 "
13 IPADDR = " 1 0 . 0 . 0 . 1 0 "
14 NETMASK= " 2 5 5 . 0 . 0 . 0 "
15 RT_LOOPBACK=" yes "
16 RTCAP=" no "
17 STAGE_2_SRC=""
18 STAGE_2_DST=""
19 STAGE_2_CMDS=""
20
21 TDMA_MODE=" s l a v e "
22 TDMA_SLAVES= " 1 0 . 0 . 0 . 1 0 1 0 . 0 . 0 . 1 1 "
23 TDMA_CYCLE="3000"
24 TDMA_OFFSET="200"

Listing A.14: The slave’s rtnet.conf

Glossary

ADEOS Adaptive Domain Environment for Operating Systems - “The Adaptive Do-
main Environment for Operatign Systems (Adeos) was designed to offer the
capability of sharing the hardware between multiple operating systems. This
can in turn be used to create a real-time domain which has priority on all other
domains.” [Yag01, p. 1]

API “An application programming interface (API) is a source code interface that a
computer system or program library provides to support requests for services
to be made of it by a computer program.” [Wik07a, cmp.]

ARP With the IP protocol it is only possible to address nodes on layer 3 of the
ISO/OSI network model. Layer 3 is not aware of the hardware-address of
participating nodes. It is therefore not possible to communicate on basis of
physical addresses. The Address Resolution Protocol (ARP) has been devel-
oped for this purpose. It converts logical IP-addresses into network specific
hardware-addresses [Hei02, cmp. p. 228].

ASIC “An application-specific integrated circuit (ASIC) is an integrated circuit (IC)
customised for a particular use, rather than intended for general-purpose use.
For example, a chip designed solely to run a cell phone is an ASIC. In contrast,
the 7400 series and 4000 series integrated circuits are logic building blocks that
can be wired together for use in many different applications.” [Wik07b]

ASN.1 Abstract Syntax Notation 1 - Is the encoding scheme for Management-Information-
Base-Variables which have been defined by the ISO. It is used to describe
complex data structures in a manufacturer independent way. [Hei02, cmp. p.
744-745]

burst “Operation of a data network in which data transmission is interrupted at inter-
vals.” [Wik07c]

busy waiting Permanently requesting if a specific status has been reached. Polling
as a field of application requests communication participants to transmit their
data in a cyclic fashion. [WB05, cmp. p. 263]

CAN Controller Area Network - A fieldbus system which has mainly been developed
for interconnection of devices in cars [WB05, cmp. p. 278].

CAP Computer Aided Planning

GLOSSARY 95

collision domain “A single, half duplex mode CSMA/CD network. If two of more
Media Access Control (MAC) sublayers are within the sme collision domain
and both transmit at the same time, a collision will occur. MAC sublayers sepa-
rated by a repeater are in the same collision domain. MAC sublayers separated
by a bridge are within different collision domains” [oEI05, p. 22]

context switching “Context Switching is the process of switching from one thread
of execution to another. This involves saving the state of the CPU’s regis-
ters and loading a new state, flushing caches, and changing the current virtual
memory map. Context switches on most architectures are a relatively expen-
sive operation and as such they are avoided as much as possible.” [Jos05, p.
9]

CoS “Class of Service is a method which classifies traffic into specific classes which
are offered different grade of service through the network. ”[Jas02, p. 16]

EMC “Electromagnetic Compatibility is the branch of electrical sciences which stud-
ies the unintentional generation, propagation and reception of electromagnetic
energy with reference to the unwanted effects that such an energy may induce.
To this purpose, the goal of EMC is the correct operation, in the same electro-
magnetic environment, of different equipment which involve electromagnetic
phenomena in their operation.” [Wik07e]

FCFS First Come First Served - Elements of this data structure get processed in the
order they arrive. [Jas02, cmp. p. 89]

FIFO Abbreviation for a First In First Out queue. Elements that are first stored in
this data structure are first fetched out of the queue. This can be seen in contrast
to a stack where elements that got first stored in the queue are last fetched out
of the queue.

FTP File Transfer Protocol - allowes file exchange between participants regardless
of architecture and used operating system. [Hei02, cmp. p. 339]

HAL The Hardware abstraction layer is used to represent different hardware in a
similar fashion to the operating system which controls it. Thus it is easy to
adapt operating systems which support a HAL to different hardware. [Tie03,
cmp. p. 77]

HTTP The HyperText Transport Protocol is mainly used for exchange of hypertext-
documents between WWW-clients and WWW-servers. [Hei02, cmp. p. 667]

I/O Input/Output

IAK The processor responds with Interrupt Acknowledge (IAK) upon an Interrupt
Request (IRQ) to display the device to place its interrupt vector number on the
data bus. The processor then effectively simulates an INT instruction using the
supplied vector index. [Abb06, cmp. p. 144]

GLOSSARY 96

IEC “The International Electrotechnical Commission (IEC) is the leading global
organization that prepares and publishes international standards for all elec-
trical, electronic and related technologies. These serve as a basis for national
standardization and as references when drafting international tenders and con-
tracts. Through its members, the IEC promotes international cooperation on all
questions of electrotechnical standardization and related matters, such as the
assessment of conformity to standards, in the fields of electricity, electronics
and related technologies.” [IEC07]

IEEE “The Institute of Electrical and Electronics Engineers or IEEE (pronounced
as eye-triple-e) is an international non-profit, professional organization for the
advancement of technology related to electricity. It has the most members of
any technical professional organization in the world, with more than 360,000
members in around 175 countries.” [Wik07h]

inbound signalling The opposite of “outbound signalling”. Signalling data and data
itself are transmitted in the same communication channels.

IRQ “A device requiring service asserts an Interrupt Request (IRQ) line.” [Abb06,
p. 144] Therefore this signal displays an event to the processor.

ISO “The International Standards Organization specifies requirements for products,
services, processes, materials and systems. ISO standards are designed to be
implemented worldwide.” [Sec06, cmp.]

ISR “The instruction stream that services the event (an interrupt) is called an Inter-
rupt Service Routine.” [Abb06, p.141]

MBR “A Master Boot Record (MBR), or partition sector, is the 512-byte boot sector
that is the first sector (Sector 0) of a partitioned data storage device such as
a hard disk . . . It is sometimes used for bootstrapping operating systems, con-
taining a machine code program; sometimes used for holding part of a disk’s
partition table2; and sometimes used for uniquely identifying individual disk
media, with a 32-bit data signature; although on some machines it is entirely
unused.” [Wik07k]

multiplexer Multiplexer allow the transmission of more than one signal over one
communication line at the same time. There exist different approaches: fre-
quency, time, code and wavelength division multiplex. The main reason for
multiplexing is to reduce the number of required communication lines. [Loc02,
cmp. p. 220]

OSI The Open Systems Interconnection model is built of 7 layers. The functionality
of each layer is determined in a unique manufacturer independent communi-
cation model. Each layer provides specific functionality for its upper layer
functionality. Communication between layers happens over so called “primi-
tives”. [Hei02, cmp. p. 20]

outbound signalling Signalling is performed outside the actual communication stream.
Applied to telephony that means that signalling data is transmitted outside the
frequency band (300Hz . . . 3400Hz) of speech. [EH92, cmp. p. 388]

GLOSSARY 97

PCI The Peripheral Component Interconnect is implemented as a 32 or 64Bit broad
address-/databus. There can be multiple masters with central arbitration. Usu-
ally PCI is used in Intel based PCs, Power-PCs and Alpha workstations by
DEC. [Dem00, cmp. p. 560-561]

PLC “Usually a Programmable Logic Controller is used to realize a discrete control
unit. It requests the state of inputs in a cyclic fashion associates them and sets
outputs accordingly to the program logic.” [WB05, p. 8]

PPC Production Planning and Production Control

process “A program during its state of execution” [Her04, p. 21]. If a program gets
executed, its program code gets loaded into the computers main memory and
started. The running program is then called process.

Q−Q plot “A Quantile-Quantile plot is a scatter plot comparing the fitted and em-
pirical distributions in terms of the dimensional values of the variable (i.e.,
empirical quantiles). It is a graphical technique for determining if a data set
come from a known population. In this plot on the y-axis we have empirical
quantiles and on the x-axis we have the ones got by the theoretical model.”
[Ric05, p. 4]

QoS “Quality of Service describes a guaranteed service, which is offered by a net-
work to an application, based on a contract. Quantitative characteristics (QoS-
parameters) which describe the grade of service are negotiated between the
network and the application. ”[Jas02, p. 13]

RFC “In internetworking and computer network engineering, Request for Com-
ments (RFC) documents are a series of memoranda encompassing new re-
search, innovations, and methodologies applicable to Internet technologies.”
[Wik07n]

round trip time “The interval between the sending of a packet and the reciept of its
acknowledgement.” [KP91, cmp. p. 1]

RPC Remote Procedure Calls are used to distribute computing power to several
computers. Further it is used to perform specific action on remote comput-
ers. [Ray01, cmp. p. 924]

RX abbreviation for receive

SMTP The Simple Mail Transfer Protocol is used for exchanging E-Mails between
computers. It relies on the TCP as transport protocol and uses the well-known
port 25. [Hei02, cmp. p. 471]

TCP The Transport Control Protocol is used in packetswitching networks for virtual
connection-oriented and sequenced data transmission. As such the integrity of
transmitted data is assured. It is built as layer 4 protocol upon the internet
protocol (IP). [Hei02, cmp. p. 265]

GLOSSARY 98

TLB “A Translation Lookaside Buffer (TLB) is a cache in a CPU that is used to
improve the speed of virtual address translation. A TLB has a fixed number of
entries containing parts of the page table which translate virtual addresses into
physical addresses.” [Wik07q]

TOS The Type Of Service field can be used for inbound signalling. It displays the
priority of IP packets. [Hei02, cmp. p. 97]

TTP “The Time Triggered Protocol belongs to the class of the time-triggered pro-
tocols, where the temporal control signals are solely derived from the pro-
gression of time. TTP was originally developed for high-dependability hard
real-time applications, where timely error detection and fault-tolerance must
be provided.” [H. 98, p. 1]

TX abbreviation for transmit

UDP The User Datagram Protocol is a layer 4 protocol which supports multiple
sessions for the transmission of datagramms. Like the TCP protocol it relies
on the internet protocols on layer 3 of the ISO/OSI stack. As a best-effort
protocol there is no end-to-end control, sequencing and acknowledgement for
received datagramms. [Hei02, cmp. p. 689]

vanilla Linux This are the official kernel sources released on http://www.kernel.org/.
[Ver07, cmp.]

V LAN “. . . is a group of network devices and services that is not restricted to a phys-
ical segment or switch . . . VLANs logically segment switched networks based
on an organization’s functions, project teams, or applications rather than on a
physical or geographical basis.” [Ron04, p. 304]

V ME The “Versa Module Europa” or “VERSAbus-E” is “a scalable backplane bus
interface . . . Three main types of cards reside on the bus. The Controller, which
supervises bus activity. A Master which Reads/Writes data to a Slave board,
and a Slave interface which simply allows data to be accessed via a Read or
Write from a Master.” [Dav07, cmp.]

V OIP Voice over IP is used to convey telephone calls over packet switched networks.
Classical data networks had to be adapted for the transmission of speech data.
Digital data is compressed and requires therfore fewer bandwidth than analog
telephony (factor 10). [Hei02, cmp. p. 689]

http://www.kernel.org/

Bibliography

[Abb06] Doug Abbott, Linux for Embedded and Real-time Applications, 2006.

[AKRS94] C. Aras, J. Kurose, D. Reeves, and H. Schulzrinne, Real-time communica-
tion in packet-switched networks, 1994.

[B. 04] B. Chapman and R. Graziani and E. Horn and A. Johnson and A. Large and
T. Rufi and J. DeLeon and R. Duffy and J. Lorenz and A. Tucker, CCNA 1
and 2 Companion Guide, Cisco Press, 2004.

[Bei07] I. Beijnum, Traffic Engineering: Queuing, Traffic Shaping, and Policing,
2007.

[BS07] Byte and Switch, Metcalfe: FC ’Beginning to Smell’, http://www.
byteandswitch.com/document.asp?doc_id=34327, 2007.

[cap06] captain.at, Parallel port frequency test of RTAI - Hard real time test, http:
//www.captain.at/programming/rtai/test.php, 2006.

[Cis05] Cisco Systems, Inc., Configuring EtherChannel and 802.1Q Trunking
Between Catalyst L2 Fixed Configuration Switches and a Router (In-
terVLAN Routing), http://www.cisco.com/warp/public/473/
158.pdf, 2005.

[Cis07a] Cisco Systems, Inc, Catalyst 2950 and Catalyst 2955 Switch Software Con-
figuration Guide, 12.1(22)EA2 - Configuring QoS, http://www.cisco.
com/en/US/products/hw/switches/ps628/products_
configuration_guide_chapter09186a00802c31e8.html#
wp1094275, 2007.

[Cis07b] , Configuring VLANs, http://www.cisco.com/en/US/
products/hw/switches/ps628/products_configuration_
guide_chapter09186a00802c305f.html, 2007.

[Cis07c] Cisco Systems, Inc., Configuring Voice VLAN, http://www.
cisco.com/univercd/cc/td/doc/product/lan/cat2970/
12220se/2970scg/swvoip.pdf, 2007.

[CS06] A. Lüder C. Schwab, Automatisierungsprotokolle, Industrial Ethernet
(Ethernet-basierte Automatisierungsprotokolle), April 2006.

http://www.byteandswitch.com/document.asp?doc_id=34327
http://www.byteandswitch.com/document.asp?doc_id=34327
http://www.captain.at/programming/rtai/test.php
http://www.captain.at/programming/rtai/test.php
http://www.cisco.com/warp/public/473/158.pdf
http://www.cisco.com/warp/public/473/158.pdf
http://www.cisco.com/en/US/products/hw/switches/ps628/products_configuration_guide_chapter09186a00802c31e8.html#wp1094275
http://www.cisco.com/en/US/products/hw/switches/ps628/products_configuration_guide_chapter09186a00802c31e8.html#wp1094275
http://www.cisco.com/en/US/products/hw/switches/ps628/products_configuration_guide_chapter09186a00802c31e8.html#wp1094275
http://www.cisco.com/en/US/products/hw/switches/ps628/products_configuration_guide_chapter09186a00802c31e8.html#wp1094275
http://www.cisco.com/en/US/products/hw/switches/ps628/products_configuration_guide_chapter09186a00802c305f.html
http://www.cisco.com/en/US/products/hw/switches/ps628/products_configuration_guide_chapter09186a00802c305f.html
http://www.cisco.com/en/US/products/hw/switches/ps628/products_configuration_guide_chapter09186a00802c305f.html
http://www.cisco.com/univercd/cc/td/doc/product/lan/cat2970/12220se/2970scg/swvoip.pdf
http://www.cisco.com/univercd/cc/td/doc/product/lan/cat2970/12220se/2970scg/swvoip.pdf
http://www.cisco.com/univercd/cc/td/doc/product/lan/cat2970/12220se/2970scg/swvoip.pdf

BIBLIOGRAPHY 100

[cTA06] EPSG Office c/o TEMA AG, Ethernet powerlink one step ahead, EPSG,
2006.

[D. 05] D. Stahr, Example 5: Rate shaping, http://ebtables.
sourceforge.net/examples/example5.html, 2005.

[Dav03] David A. Wheeler, Program Library HOWTO, http://tldp.org/
HOWTO/Program-Library-HOWTO/index.html, 2003.

[Dav07] Leroy Davis, VME Bus, http://www.interfacebus.com/
Design_Connector_VME.html#a, 2007.

[Deb06] Debian FAQ Authors, The Debian GNU/Linux FAQ - Chapter 10,
http://www.debian.org/doc/manuals/debian-faq/
ch-customizing.en.html#s-booting, 2006.

[Dem00] Klaus Dembowski, PC Hardware Referenz, 2000.

[EH92] Wolfgang Lörcher Eberhard Herter, Nachrichtentechnik, 1992.

[e.V06] PROFIBUS Nutzerorganisation e.V., Profinet systembeschreibung,
PROFINET, 2006.

[Fab07] Fabrice Bellard, QEMU Accelerator User Documentation, http://
fabrice.bellard.free.fr/qemu/kqemu-doc.html, 2007.

[Fai01] Gorry Fairhurst, Ethernet Bridges and Switches, http://www.erg.
abdn.ac.uk/users/gorry/course/lan-pages/bridge.
html, 2001.

[Fis04] Bernhard Fischer, Netzwerktechnik, 2004.

[Flo05] Florida Center for Instructional Technology College of Education, Topology,
http://fcit.usf.edu/network/chap5/chap5.htm, 2005.

[Fre95] Free Software Foundation, Linux Programmer’s Manual, 1995.

[Gra03] Steve Graegert, Das Ethernet Tutorial, http://eth0.graegert.
com/index.php?section=media1&act=download&path=
/media/archive1/Books/EtherBook/&file=etherbook.
pdf, 2003.

[Gro06] EtherCAT Technology Group, Ethercat, ETG, 2006.

[H. 98] H. Kopetz, A comparison of CAN and TTP, 1998.

[Har02] C. Harnisch, Routing & Switching, 2002.

[Hei02] Mathias Hein, TCP/IP, mitp-Verlag/Bonn, 2002.

[Her91] Hermann Kopetz, Event-Triggered Versus Time-Triggered Real-Time Sys-
tems, Proceedings of the International Workshop on Operating Systems of
the 90s and Beyond (London, UK), Springer-Verlag, 1991, pp. 87–101.

http://ebtables.sourceforge.net/examples/example5.html
http://ebtables.sourceforge.net/examples/example5.html
http://tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://www.interfacebus.com/Design_Connector_VME.html#a
http://www.interfacebus.com/Design_Connector_VME.html#a
http://www.debian.org/doc/manuals/debian-faq/ch-customizing.en.html#s-booting
http://www.debian.org/doc/manuals/debian-faq/ch-customizing.en.html#s-booting
http://fabrice.bellard.free.fr/qemu/kqemu-doc.html
http://fabrice.bellard.free.fr/qemu/kqemu-doc.html
http://www.erg.abdn.ac.uk/users/gorry/course/lan-pages/bridge.html
http://www.erg.abdn.ac.uk/users/gorry/course/lan-pages/bridge.html
http://www.erg.abdn.ac.uk/users/gorry/course/lan-pages/bridge.html
http://fcit.usf.edu/network/chap5/chap5.htm
http://eth0.graegert.com/index.php?section=media1&act=download&path=/media/archive1/Books/EtherBook/&file=etherbook.pdf
http://eth0.graegert.com/index.php?section=media1&act=download&path=/media/archive1/Books/EtherBook/&file=etherbook.pdf
http://eth0.graegert.com/index.php?section=media1&act=download&path=/media/archive1/Books/EtherBook/&file=etherbook.pdf
http://eth0.graegert.com/index.php?section=media1&act=download&path=/media/archive1/Books/EtherBook/&file=etherbook.pdf

BIBLIOGRAPHY 101

[Her95] Hermann Kopetz and Andreas Krüger and Dietmar Millinger and An-
ton Schedl, A Synchronization Strategy for a Time-Triggered Multicluster
Real-Time System, 14th IEEE Symposium on Reliable Distributed Systems
(1995).

[Her04] Helmut Herold, Linux/Unix Systemprogrammierung, 2004.

[Hig98] Gary N. Higginbottom, Performance evaluation of communication net-
works, 1998.

[IEC07] IEC, Mission and objectives, http://www.iec.ch/about/
mission-e.htm, 2007.

[IET94] IETF, Integrated Services in the Internet Architecture: an Overview, http:
//tools.ietf.org/html/rfc1633, 1994.

[IET97] , Resource ReSerVation Protocol (RSVP), http://tools.
ietf.org/html/rfc2205, 1997.

[IET98] , An Architecture for Differentiated Services, http://tools.
ietf.org/html/rfc2475, 1998.

[J. 03] J. D. Miller, M. R. Anderson, E. M. Wenzel, B. U. McClain, Latency
Measurement of a real-time virtual acoustic environment rendering sys-
tem, http://humanfactors.arc.nasa.gov/publications/
20051222163516_Miller_2003_ICADMAWM.pdf, 2003.

[J. 04] J. Kiszka, R. Schwebel, Alternative: RTnet, http://www.rts.
uni-hannover.de/rtnet/download/ad104705.pdf, 2004.

[J. 05a] J. Corbet, A. Rubini and G. Kroah-Hartman, Linux Device Drivers, Third
Edition, http://lwn.net/Kernel/LDD3/, 2005.

[J. 05b] J. Kiszka, B. Wagner, Y. Zhang, J. Broenink, RTnet - A Flexible Hard Real-
Time Networking Framework, http://www.rts.uni-hannover.
de/rtnet/download/RTnet-ETFA05.pdf, 2005.

[Jak] Jakob Engblom and Andreas Ermedahl and Friedhelm Stappert, Comparing
Different Worst-Case Execution Time Analysis Methods.

[Jas02] J. Jasperneite, Leistungsbewertung eines lokalen Netywerkes mit Class-of-
Service Unterstützung für die prozessnahe Echtzeitkommunikation, October
2002.

[Jen07] E. Douglas Jensen, Time/Utility Functions, http://www.real-time.
org/timeutilityfunctions.htm, 2007.

[JH86] P. O’Reilly J. Hammond, Performance analysis of Local Computer Net-
works, 1986.

[JJ01] K. Watson J. Jasperneite, P. Neumann, Real-time communication in indus-
trial automation with switched ethernet networks, 2001.

http://www.iec.ch/about/mission-e.htm
http://www.iec.ch/about/mission-e.htm
http://tools.ietf.org/html/rfc1633
http://tools.ietf.org/html/rfc1633
http://tools.ietf.org/html/rfc2205
http://tools.ietf.org/html/rfc2205
http://tools.ietf.org/html/rfc2475
http://tools.ietf.org/html/rfc2475
http://humanfactors.arc.nasa.gov/publications/20051222163516_Miller_2003_ICADMAWM.pdf
http://humanfactors.arc.nasa.gov/publications/20051222163516_Miller_2003_ICADMAWM.pdf
http://www.rts.uni-hannover.de/rtnet/download/ad104705.pdf
http://www.rts.uni-hannover.de/rtnet/download/ad104705.pdf
http://lwn.net/Kernel/LDD3/
http://www.rts.uni-hannover.de/rtnet/download/RTnet-ETFA05.pdf
http://www.rts.uni-hannover.de/rtnet/download/RTnet-ETFA05.pdf
http://www.real-time.org/timeutilityfunctions.htm
http://www.real-time.org/timeutilityfunctions.htm

BIBLIOGRAPHY 102

[Joh93] Johannes Reisinger and Andreas Steininger, The Design of a Fail-Silent Pro-
cessing Node for the Predictable Hard Real-Time System MARS, Distributed
Systems Engineering Journal, pp. 104-111 (1993).

[Jos05] Josh Aas, Understanding the Linux 2.6.8.1 CPU Scheduler,
http://josh.trancesoftware.com/linux/linux_cpu_
scheduler.pdf, 2005.

[Kos05] Marco Kosinski, QoS-orientierte Kommunikation über Ethernet für verteilte,
Linux-basierte Automatisierungsanwendungen, April 2005.

[KP91] Phil Karn and Craig Partridge, Improving round-trip time estimates in reli-
able transport protocols, ACM Transactions on Computer Systems 9 (1991),
no. 4, 364–373.

[KR05] P. McHardy K. Rechert, Vordrängler - Queueing Disciplines: Traffic Control
mit Linux, 2005.

[Kut02] Friedrich Kutscher, Ethernet in der Industrieautomation, Diploma Thesis,
2002.

[LH04] J. Loeser and H. Haertig, Low-latency hard real-time communication over
switched ethernet, 2004.

[Lim01] Ang Ngang Lim, What is switching fabric?, http://searchstorage.
techtarget.com/sDefinition/0,290660,sid5_
gci214147,00.html, 2001.

[LM06] A. Lueder and R. Messerschmidt, Was ist Echtzeit?, Industrial Ethernet
(Ethernet-basierte Automatisierungsprotokolle), April 2006.

[Loc02] Dietmar Lochmann, Digitale Nachrichtentechnik, 2002.

[Lot01] Lothar Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band
3, 2001.

[Lut06] P. Lutz, Sercos iii, Industrial Ethernet (Ethernet-basierte Automa-
tisierungsprotokolle), 2006.

[MI06a] Modbus-IDA, Modbus application protocol specification, http:
//www.modbus-ida.org/docs/Modbus_Application_
Protocol_V1_1b.pdf, 2006.

[MI06b] , Modbus messaging on tcp/ip implementation guide,
http://www.modbus-ida.org/docs/Modbus_Messaging_
Implementation_Guide_V1_0b.pdf, 2006.

[Mue00] F. Mueller, Timing analysis for instruction caches, 2000.

[Mül] Frank Müller, Efficient Analysis of Temporal Properties for Real-Time Sys-
tems - A Formal Framework, Supporting Protocols, and an Implementation.

http://josh.trancesoftware.com/linux/linux_cpu_scheduler.pdf
http://josh.trancesoftware.com/linux/linux_cpu_scheduler.pdf
http://searchstorage.techtarget.com/sDefinition/0,290660,sid5_gci214147,00.html
http://searchstorage.techtarget.com/sDefinition/0,290660,sid5_gci214147,00.html
http://searchstorage.techtarget.com/sDefinition/0,290660,sid5_gci214147,00.html
http://www.modbus-ida.org/docs/Modbus_Application_Protocol_V1_1b.pdf
http://www.modbus-ida.org/docs/Modbus_Application_Protocol_V1_1b.pdf
http://www.modbus-ida.org/docs/Modbus_Application_Protocol_V1_1b.pdf
http://www.modbus-ida.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
http://www.modbus-ida.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf

BIBLIOGRAPHY 103

[ODV06] ODVA, Ethernet/ipTM - cip on ethernet technology, ODVA, 2006.

[oEI98] Institute of Electrical and Electronics Engineers (IEEE), Token ring access
method and Physical Layer specifications, 1998.

[oEI04] , Media Access Control (MAC) Bridges, 2004.

[oEI05] , Part3: Carrier sense multiple access with collision detection (CS-
MA/CD) access method and physical layer specifications, 2005.

[oEI06] , Virtual Bridged Local Area Networks, 2006.

[P. 04] P. Soetens, HOWTO Port your C++ GNU/Linux application to
RTAI/LXRT, http://people.mech.kuleuven.be/~psoetens/
portingtolxrt.html, 2003, 2004.

[P. 05] P. Cloutier, P. Mantegazza, S. Papacharalambous, LXRT services
(soft-hard real time in user space)., https://www.rtai.org/
documentation/magma/html/api/group__lxrt.html, 2005.

[Pop00] P. Pop, Scheduling and communication synthesis for distributed real-time
systems, 2000.

[Ray01] John Ray, Der neue Linux Hacker’s Guide, 2001.

[RDH07] H. Huckeba R. Dlugy-Hegwer, Designing and Testing IEEE 1588 Timing
Networks, http://www.symmttm.com/pdf/Gps/PTP_WP2.pdf,
2007.

[Ric05] Vito Ricci, Fitting Distributions with R, http://cran.r-project.
org/doc/contrib/Ricci-distributions-en.pdf, 2005.

[Ron04] Ron Bodtcher, K Kirkendall, Jim Lorenz, Rick McDonald, CCNA 3 and 4
Companion Guide, Cisco Press, 2004.

[Ron07] Frank Ronneburg, Debian-Kernel-Pakete erzeugen, http:
//debiananwenderhandbuch.de/kernelbauen.html, 2007.

[Ros06] M. Rostan, Ethercat - der ethernet-feldbus, Industrial Ethernet (Ethernet-
basierte Automatisierungsprotokolle), 2006.

[S. 07] S. Smolorz, Echtzeit-Linux mit Xenomai, http://www.emlix.com/
fileadmin/emlix/dokumente/FA_Xenomai.pdf, 2007.

[Sch06] B. Schneider, Latenzzeitmessung in einem Linux-Echtzeit-Framework, Au-
gust 2006.

[Sec06] ISO Central Secretariat, ISO in brief, 2006.

[SGG05] A. Silberschatz, G. Gagne, and P. Galvin, Operating System Concepts, 7th
edition, John Wiley and Sons, 2005.

http://people.mech.kuleuven.be/~psoetens/portingtolxrt.html
http://people.mech.kuleuven.be/~psoetens/portingtolxrt.html
https://www.rtai.org/documentation/magma/html/api/group__lxrt.html
https://www.rtai.org/documentation/magma/html/api/group__lxrt.html
http://www.symmttm.com/pdf/Gps/PTP_WP2.pdf
http://cran.r-project.org/doc/contrib/Ricci-distributions-en.pdf
http://cran.r-project.org/doc/contrib/Ricci-distributions-en.pdf
http://debiananwenderhandbuch.de/kernelbauen.html
http://debiananwenderhandbuch.de/kernelbauen.html
http://www.emlix.com/fileadmin/emlix/dokumente/FA_Xenomai.pdf
http://www.emlix.com/fileadmin/emlix/dokumente/FA_Xenomai.pdf

BIBLIOGRAPHY 104

[Sma03] Jeffrey L. Small, Factors that influence the decision to change to switch-
fabric backplane technology, http://www.embedded-computing.
com/pdfs/Fairchild.Win03.pdf, 2003.

[Sta03] William Stallings, Betriebssysteme, Pearson Studium, 2003.

[Tho05] Thomas Graf, Greg Maxwell , Remco van Mook, Martijn van Oosterhout,
Paul B Schroeder, Jasper Spaans, Pedro Larroy, Linux Advanced Routing &
Traffic Control, http://lartc.org/, 2005.

[Tie03] Eric Tierling, Windows Server 2003, 2003.

[Tim00] Tim Waugh, User-level device drivers, http://people.redhat.
com/twaugh/parport/html/ppdev.html, 2000.

[Tzi99] Tzi-cker Chiueh, RETHER: A Software-Only Real-Time Ethernet for PLC
Networks, http://www.usenix.org/publications/library/
proceedings/es99/full_papers/chiueh/chiueh.pdf, 1999.

[Ver07] Sven Vermeulen, Gentoo Linux Kernel Guide, http://www.gentoo.
org/doc/en/gentoo-kernel.xml, 2007.

[Vir07] Virtuelles Software Engineering Kompetenzzentrum, Begriffsdefinition:
Echtzeitfhigkeit, Rechtzeitigkeit, Gleichzeitigkeit, Jitter, Determinismus,
http://www.softwarekompetenz.de/?28612, 2007.

[VS06] D. Vasko V. Schiffer, P. Kucharski, Cip safety auf ethernet/ip, Industrial Eth-
ernet (Ethernet-basierte Automatisierungsprotokolle), 2006.

[WB05] H. Woern and U. Brinkschulte, Echtzeitsysteme, Springer-Verlag, 2005.

[Wik07a] Wikipedia, Application programming interface, http://en.
wikipedia.org/wiki/API, 2007.

[Wik07b] , Application specific integrated circuit, http://
en.wikipedia.org/wiki/Application-specific_
integrated_circuit, 2007.

[Wik07c] , Burst transmission, http://en.wikipedia.org/wiki/
Burst_transmission, 2007.

[Wik07d] , Carrier sense multiple access with collision avoid-
ance, http://en.wikipedia.org/wiki/Carrier_sense_
multiple_access_with_collision_avoidance, 2007.

[Wik07e] , Electromagnetic compatibility, http://en.wikipedia.
org/wiki/Electromagnetic_Compatibility, 2007.

[Wik07f] , Ethernet, http://en.wikipedia.org/wiki/Ethernet,
2007.

[Wik07g] , Fieldbus, http://en.wikipedia.org/wiki/Fieldbus,
2007.

http://www.embedded-computing.com/pdfs/Fairchild.Win03.pdf
http://www.embedded-computing.com/pdfs/Fairchild.Win03.pdf
http://lartc.org/
http://people.redhat.com/twaugh/parport/html/ppdev.html
http://people.redhat.com/twaugh/parport/html/ppdev.html
http://www.usenix.org/publications/library/proceedings/es99/full_papers/chiueh/chiueh.pdf
http://www.usenix.org/publications/library/proceedings/es99/full_papers/chiueh/chiueh.pdf
http://www.gentoo.org/doc/en/gentoo-kernel.xml
http://www.gentoo.org/doc/en/gentoo-kernel.xml
http://www.softwarekompetenz.de/?28612
http://en.wikipedia.org/wiki/API
http://en.wikipedia.org/wiki/API
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Burst_transmission
http://en.wikipedia.org/wiki/Burst_transmission
http://en.wikipedia.org/wiki/Carrier_sense_multiple_access_with_collision_avoidance
http://en.wikipedia.org/wiki/Carrier_sense_multiple_access_with_collision_avoidance
http://en.wikipedia.org/wiki/Electromagnetic_Compatibility
http://en.wikipedia.org/wiki/Electromagnetic_Compatibility
http://en.wikipedia.org/wiki/Ethernet
http://en.wikipedia.org/wiki/Fieldbus

BIBLIOGRAPHY 105

[Wik07h] , Institute of Electrical and Electronics Engineers, http://en.
wikipedia.org/wiki/IEEE, 2007.

[Wik07i] , Kernel, http://de.wikipedia.org/wiki/Kernel_
(computer_science), 2007.

[Wik07j] , Mac address, http://en.wikipedia.org/wiki/MAC_
address, 2007.

[Wik07k] , Master boot record, http://en.wikipedia.org/wiki/
Master_boot_record, 2007.

[Wik07l] , Multiplexverfahren, http://de.wikipedia.org/wiki/
TDMA#Zeitmultiplexverfahren_.28TDM.2C_TDMA.29, 2007.

[Wik07m] , Real-time, http://en.wikipedia.org/wiki/
Real-time, 2007.

[Wik07n] , Request for Comments, http://en.wikipedia.org/
wiki/Request_for_Comments, 2007.

[Wik07o] , Rtai, http://de.wikipedia.org/wiki/RTAI, 2007.

[Wik07p] , Token ring, http://en.wikipedia.org/wiki/Token_
Ring, 2007.

[Wik07q] , Translation Lookaside Buffer, http://en.wikipedia.
org/wiki/Translation_Lookaside_Buffer, 2007.

[Yag01] Karim Yaghmour, Building a Real-Time Operating System on top of the
Adaptive Domain Environment for Operating Systems, http://www.
opersys.com/ftp/pub/Adeos/rtosoveradeos.pdf, 2001.

http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/IEEE
http://de.wikipedia.org/wiki/Kernel_(computer_science)
http://de.wikipedia.org/wiki/Kernel_(computer_science)
http://en.wikipedia.org/wiki/MAC_address
http://en.wikipedia.org/wiki/MAC_address
http://en.wikipedia.org/wiki/Master_boot_record
http://en.wikipedia.org/wiki/Master_boot_record
http://de.wikipedia.org/wiki/TDMA#Zeitmultiplexverfahren_.28TDM.2C_TDMA.29
http://de.wikipedia.org/wiki/TDMA#Zeitmultiplexverfahren_.28TDM.2C_TDMA.29
http://en.wikipedia.org/wiki/Real-time
http://en.wikipedia.org/wiki/Real-time
http://en.wikipedia.org/wiki/Request_for_Comments
http://en.wikipedia.org/wiki/Request_for_Comments
http://de.wikipedia.org/wiki/RTAI
http://en.wikipedia.org/wiki/Token_Ring
http://en.wikipedia.org/wiki/Token_Ring
http://en.wikipedia.org/wiki/Translation_Lookaside_Buffer
http://en.wikipedia.org/wiki/Translation_Lookaside_Buffer
http://www.opersys.com/ftp/pub/Adeos/rtosoveradeos.pdf
http://www.opersys.com/ftp/pub/Adeos/rtosoveradeos.pdf

	Declaration
	Abstract
	English
	Deutsch

	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Focus of this publication
	1.2 Organization of this diploma thesis

	2 Theoretical aspects
	2.1 Terminology
	2.1.1 Process and Task
	2.1.2 Notation of data packets

	2.2 What is Real-Time?
	2.2.1 Deterministic behavior

	2.3 Real-Time data processing
	2.3.1 Requirements for real-time systems

	2.4 Real-Time in communication technology
	2.4.1 The ISO/OSI communication model
	2.4.2 Topologies of real-time communications systems
	2.4.3 Media access control communication systems

	2.5 Classical Ethernet
	2.5.1 Structure and Topology
	2.5.2 Ethernet and Media Access (CSMA/CD)
	2.5.3 Structure of ethernet frames
	2.5.4 Typical Ethernet devices
	2.5.5 Limitations of Classical Ethernet

	2.6 Ethernet as an industrial communication system
	2.6.1 Fieldbusses
	2.6.2 Ethernet

	2.7 Classification of requirements
	2.8 Hardware requirements
	2.8.1 The Central Processing Unit
	2.8.2 Communication Elements

	2.9 Software requirements
	2.9.1 The role of the process scheduler
	2.9.2 Interrupt handling in real-time operating systems
	2.9.3 Memory Addressing
	2.9.4 Paging

	2.10 Approaches for real-time ethernet
	2.10.1 The QoS approach
	2.10.2 The TDMA approach
	2.10.3 The Token-Passing approach

	3 Validation of real-time timing-behavior
	3.1 Introduction
	3.1.1 The arrangement

	3.2 Evaluation of the real-time communication system
	3.2.1 Traffic generation
	3.2.2 Traffic accounting
	3.2.3 Analysis of gathered data

	3.3 Preliminaries
	3.3.1 Used Hardware
	3.3.2 Software used in the experiment
	3.3.3 Correlation of development and deployment
	3.3.4 Steps toward a real-time network
	3.3.5 Compilation of a patched kernel
	3.3.6 Compilaton of RTnet
	3.3.7 Deploying the libraries
	3.3.8 Deployment of the real-time linux-distribution
	3.3.9 Deployment of the real-time application framework
	3.3.10 Starting RTnet

	3.4 Description of the real-time network-testing framework
	3.4.1 Organization of the source code
	3.4.2 Access to the parallel port
	3.4.3 The Source
	3.4.4 The Sink

	3.5 RTnet - Latency Measurements
	3.5.1 Using TDMA networking functions
	3.5.2 Gathering latency data
	3.5.3 Measurement results

	3.6 QoS - Latency Measurements
	3.6.1 Using standard networking functions
	3.6.2 Gathering latency data
	3.6.3 Measurement results

	4 Real-Time Ethernet applied - Industrial solutions
	4.1 Technology overview
	4.2 ETHERNET Powerlink
	4.2.1 Conclusion

	4.3 Ethernet/IP
	4.4 EtherCAT
	4.5 PROFINET
	4.5.1 Integration of existing fieldbusses

	4.6 MODBUS/TCP
	4.7 Sercos III
	4.7.1 Topology
	4.7.2 Real-Time communication

	4.8 Prospect of industrial solutions
	4.8.1 Organization in interest groups
	4.8.2 Compatibility and Enhancements
	4.8.3 Fields of application

	A Source Code
	A.1 Managing RTAI and RTnet
	A.1.1 The real-time data transmission Testing framework

	A.2 Configuration files
	A.2.1 Switch configuration
	A.2.2 RTnet configuration

	Glossary
	Bibliography

