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Abstract 

Photoplethysmography (PPG) is a simple and low-cost optical technique which can 

be used to determine blood volume changes in the microvascular bed of tissue. 

This technique is based on the use of one light source and a light detector, 

operating in light transmission or reflection mode. This device allows to determine 

information on the cardiovascular system, and can be used to derive blood oxygen 

saturation measurements operating with red and infrared light.  

The aim of this work is to test and compare the performance of a developed low-

cost PPG prototype to current devices used for the detection of RR-intervals during 

heartbeat and blood oxygen saturation measurements, respectively 

Electrocardiography (ECG) and Pulse Oximeter.  

Five subjects have been equipped with the above-mentioned devices and their 

data have been recorded for five minutes during “rest” and “moderate exertion” 

phases. The results of the measurements have been algorithmically processed 

and analysed in order to obtain the variables of interest, namely the RR-intervals 

and blood oxygen saturation. The tool selected for the interpretation of the results 

of RR-intervals measurements is the Bland-Altman plot.  

ECG and PPG devices have shown a good agreement for datasets acquired during 

the rest phase. Nevertheless, the level of agreement decreases for datasets 

related to “moderate exertion” phases, probably because of motion artefacts which 

affect the operation of both devices. Pulse oximeter and PPG devices showed a 

moderate agreement, even though the measured values were within a reasonable 

range.  

Further developments of the prototype, e.g. through acceleration based motion 

artefacts reduction, as well as clinical calibration might be considered to improve 

the performances of the device in both measurements, respectively RR-intervals 

and blood oxygen saturation.   
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Kurzfassung 

Die Photoplethysmographie (PPG) ist eine einfache und kostengünstige optische 

Methode, mit der Volumenänderungen im mikrovaskulären Gewebe der Haut 

bestimmt werden können. Die Methode basiert auf der Verwendung einer 

Lichtquelle und einem Lichtdetektor, wobei von der Haut reflektiertes oder 

absorbiertes Licht gemessen wird. Dadurch können sowohl Informationen über 

das Herz-Kreislauf-System als auch über die Sauerstoffsättigung einer Person 

gewonnen werden.  

Ziel dieser Arbeit ist der Untersuchung und Evaluation eines in dieser Arbeit 

entwickelten Prototypen zur Messung der Herzrate, der Herzratenvariabilität sowie 

der Sauerstoffsättigung. Die gemessenen Daten wurden mit dem goldenen 

Standard, der Elektrokardiographie sowie mit einem handelsüblichen 

Pulsoxymeters verglichen. 

Fünf Testpersonen wurden mit den oben genannten Geräten ausgestattet und 

deren Körperwerte für fünf Minuten sowohl während einer Ruhephase als auch in 

einer Phase moderater körperlicher Belastung aufgezeichnet, algorithmisch 

analysiert und ausgewertet. Die berechneten RR-Intervalle als auch die 

Sauerstoffsättigung der Testpersonen wurde danach mithilfe des Bland-Altman-

Diagramms interpretiert. 

Die evaluierten Daten des entwickelten PPG-Prototypen verglichen mit denen des 

ECG Gerätes führten zu einer guten Übereinstimmung in Ruhephasen der 

Testpersonen. Aufgrund von Bewegungsartefakten sank in Phasen der moderaten 

körperlichen Anstrengung die Übereinstimmung. Beim Vergleich der 

Sauerstoffsättigung der Probanden und Probandinnen konnte moderate 

Übereinstimmung mit dem handelsüblichen Fingerpulsoxymeters erzielt werden.  

Für zukünftige Weiterentwicklungen des Prototyps, sollten Verbesserungen, 

beispielsweise durch beschleunigungssensorbasierende Reduktion der 

Bewegungsartefakte oder durch klinische Kalibrierung hinsichtlich der Messung 

der Sauerstoffsättigung, in Betracht gezogen werden.  



 

V 

Table of Content 

Declaration II 

Preface Fehler! Textmarke nicht definiert. 

Abstract III 

Kurzfassung IV 

Table of Content V 

1 Introduction 7 

2 Physiological overview and heart rate sensing techniques 10 

2.1 The heart 10 

2.2 The circulatory system 11 

2.3 Heart rate sensing techniques 12 

2.3.1 Electrocardiography (ECG) 12 

2.3.2 Photoplethysmography (PPG) 13 

2.3.3 Other techniques 14 

3 State of the Art 15 

3.1 Electrocardiogram (ECG) 15 

3.2 Photoplethysmography (PPG) 15 

3.3 PPG vs. EEG 17 

3.4 PPG peak detection 17 

4 Hardware design and sensor technology 19 

4.1 Sensor hardware 19 

4.1.1 Early developments and prototypes 19 

4.1.2 Final Prototype 21 

5 Methodology 25 

5.1 Heart beat detection and the calculation of the blood oxygen saturation 25 

5.1.1 Heart beat sensing & detection 25 

5.1.2 Calculation of the blood oxygen saturation 26 

6 Implementation, Testing 30 

6.1 Experimental setup 30 

6.1.1 Process of Data Acquisition 31 

6.2 MathWorks MATLAB Script 32 

6.2.1 Algorithm for RR intervals evaluation 33 

6.2.2 Algorithm for blood oxygen saturation evaluation 39 

7 Results 43 



 

VI 

7.1 Errors as not considered PPG peaks 43 

7.2 RR intervals 44 

7.3 Blood oxygen saturation 46 

8 Bland-Altman and regression analysis 48 

8.1 Comparison of RR-interval measurment methods 48 

8.1.1 Introduction to Bland-Altman plots 48 

8.1.2 Regression & Bland-Altman plots during rest phase 49 

8.1.3 Regression & Bland-Altman plots during stress phase 52 

8.1.4 Discussion of Bland-Altman and regression analysis 54 

8.2 Comparison of blood oxygen saturation (SpO2) measurement methods 56 

9 Conclusion 58 

Literature 59 

List of Figures 62 

List of Tables 64 

Listings 65 

 



 

7 

1 Introduction 

The aging of society and their growing cost pressure is one of the big future 

challenges of health care systems all over the world. Mobile devices and 

wearables, both equipped with various of sensors, could help resolving that 

problem in different scenarios. Those “smart”-devices can, for example, be used 

for self-monitoring purposes of individuals and therefore be used for both key 

elements of healthcare, prevention and rehabilitation.  

This work is inspired by a previous project performed during the master studies in 

Digital Healthcare at the University of Applied Science, Sankt Pölten. The project 

focussed on the development of a low cost, real-time and multi-user system to 

monitor vital signs of a group of individuals simultaneously during physical 

exercises using the method of photoplethysmography (PPG). The monitoring of 

individual’s heart rate, heart rate variability and blood oxygen saturation (SpO2) 

were key requirements of the developed system.  

The developed device measures the pulse rate of individuals using red and infrared 

light instead of green light, which is used in most of commercially available pulse 

sensing mobile devices or wearables. This is considered as a main advantage of 

the prototype due to the theoretical possibility of sensing peripheral blood oxygen 

saturation as an additional vital sign based on reflected red and infrared light 

measurements. Especially in exercise therapy situations of patients with lung 

diseases, the oxygen saturation should be continuously monitored.  

The aim of this work is to test and compare the performance of a new developed 

PPG device to current devices used for the detection of RR-intervals during a 

heartbeat and blood oxygen saturation values, respectively ECG and Pulse 

Oximeter. For this reason, a prototype of the above stated monitoring system has 

been developed, an experimental trial has been set up and the accuracy of the 

device has been analysed.  

In this work, the performance of the developed prototype has been compared to 

reference devices. The heart rate, especially the intervals between each heart beat 

has been compared to an ECG sensor, which can be considered as the current 

“golden standard” for heart rate variability analysation. Furthermore, the blood 

oxygen saturation derived by the developed prototype has been compared to a 

commercially available pulse oximeter. 
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Referring to the previous described proceeding, the research question is 

formulated as follows:  

 How reliable and accurate is the use of photoplethysmography (PPG) to 

record individual’s peak-to-peak variations in the heart rhythm compared to 

electrocardiography?    

 How reliable and accurate is the use of photoplethysmography (PPG) to 

record individual’s blood oxygen saturation (SpO2) compared to a 

commercially available device?    

To answer the above stated research questions, five subjects in rest and moderate 

physical exercise phase have been tested. Each subject was equipped with a PPG, 

ECG and pulse oximeter devices. Raw PPG, ECG and blood oxygen saturation 

signals were recorded simultaneously. To determine the RR-intervals, the raw data 

were manipulated (interpolated, filtered and aligned) and peak-to-peak intervals 

were evaluated (detection, filtering and pairing of peaks). Individual’s blood oxygen 

saturation was computed by evaluating the ratio between reflected red and infrared 

light.    

The structure of this work is characterised by two main parts, a theoretical 

fundament as well as an experimental part. The first part includes chapter 2 and 3. 

Chapter 2 gives an overview on fundamental physiology of the heart and the 

circulatory system as well as an introduction in heart rate sensing techniques. The 

state of the art methods regarding to electrocardiography (ECG) and 

photoplethysmography (PPG) peak detection are described in chapter 3.   The 

experimental part of this thesis includes chapters 4, 5, 6, 7 and 8. This part gives 

information about the process that lead to the experimental phase, the experiment 

itself, the analysis and interpretation of the results. The prototype development and 

the final prototype are described (chapter 4). The procedures for sensing and 

detection of the variables of interest, namely RR-Intervals and blood oxygen 

saturation values, are given in chapter 5. Chapter 6 deals with the description of 

the experimental setup and the algorithms developed to analyse the data and 

obtain the final results, which are described in chapter 7. Bland-Altman plots, which 

are the selected tool to verify if there is an agreement between the measurements 

performed by using different devices, is reported in chapter 8. Finally, the 

conclusions that can be drawn from this work are stated in chapter 9.  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The following definitions are related to the main variable of interest object of this 

work.  

RR interval in electrocardiography (ECG) is defined as the distance between two 

subsequent heart beats, more precisely the interval between R peaks in the QRS 

complex. A more detailed explanation of electrocardiography can be found in 

chapter “2.3.1 Electrocardiography (ECG)”. For better readability, peak-to-peak 

derived by both methods, ECG and PPG, are called “RR intervals”, even though 

peak-to-peak intervals in PPG signals are not corresponding to the QRS entity of 

ECG signals.  

SpO2 is defined as the percentage of the concentration in oxygenated blood cells 

(cHbO) compared to the sum of concentrations of reduced oxygenated blood cells 

(cHb) and oxygenated blood cells in arterial blood [7].  
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2 Physiological overview and 
heart rate sensing techniques 

2.1 The heart 

The heart is a muscular hollow organ which rhythmically pumps blood through the 

body. The right heart pumps oxygen-poor blood through the lungs while the left 

heart pumps oxygen-rich blood through the peripheral organs [1]. Figure 1 shows 

an illustration of the two pumps of the heart (left- and right heart) The contraction 

of the heart is controlled by a series of electrical impulses, originating from the 

sinoatrial node (SA node) and travels through the atrioventricular node (AV node) 

causing the polarization and depolarization of the heart’s muscle fibres. These 

electrical impulses can be monitored and recorded as electrocardiogram (see 

“2.3.1 Electrocardiography (ECG)”) [2].  

 

Figure 1: Structure and blood flow of the heart [1] 
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2.2 The circulatory system 

The function of the circulatory system is to service the needs of the body tissues: 

- to transport nutrients to the body tissues 

- to transport waste products away 

- to conduct hormones from one part of the body to another. 

In general, the circulatory system maintains an appropriate environment in all the 

tissue fluids of the body for optimal survival and function of the cells. It is divided 

in systemic circulation and pulmonary circulation (see Figure 2). The systemic 

circulation supplies blood flow to all the tissues of the body except the lungs. The 

smaller pulmonary circulation is responsible for the oxygen enrichment of blood 

[1].  

 

 

 

Figure 2: Distribution of the blood (pulmonary and systemic circulation) [1] 
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2.3 Heart rate sensing techniques  

Various methods are used to measure and analyse the activity of the heart 

including Electrocardiography, Photoplethysmography, Oscillometry and 

Phonocaridography. The following sections describe the methods of 

Electrocardiography and Photoplethysmography in more detail and give an 

overview of other sensing techniques. 

2.3.1 Electrocardiography (ECG) 

While the cardiac impulse passes through the heart, electrical current spreads from 

the heart into the adjacent tissues surrounding it. A small amount of current 

spreads all the way to the surface of the body. The electrical potentials generated 

by the current can be recorded by placing electrodes on the skin on opposite sides 

of the heart. This recording is called electrocardiogram [1]. Therefore, 

electrocardiography is a method to record changes of the variations in the electrical 

potentials of the heart muscle.  The common human heart beat is divided in three 

entities. Figure 3 shows the ECG of a usual heart beat including the entities  [3].  

The P wave is caused by the spread of depolarization through the atria, which is 

followed by the atria contraction causing a slight rise in the atria pressure curve 

immediately after the electrocardiographic P wave.  

The QRS waves (also called the QRS complex) appears about 0.16 second after 

the onset of the P wave. It represents the electrical depolarization of the 

ventricles, which initiates its contraction and causes the ventricular pressure to 

begin rising (slightly before the onset of the ventricular systole). 

The final ventricular P wave represents the stage of repolarization of the ventricles 

when the ventricular muscle fibbers begin to relax (slightly before the end of 

the ventricular contraction [1].  

 

Figure 3: ECG of an usual heart beat [4] 
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2.3.2 Photoplethysmography (PPG) 

Photoplethysmography is a simple and low-cost optical technique which can be 

used to determine blood volume changes in the microvascular bed of tissue. It is 

a widespread clinical application (e.g. pulse oximeters, vascular diagnostics and 

digital beat-to-beat blood pressure measurement systems), used non-invasively to 

make measurements on the skin surface operating at red or near infrared 

wavelength. 

 

Figure 4: Photoplethysmogram form a pulse oximeter [5] 

Figure 4 shows a representative photoplethysmogram including its most 

recognized waveform feature, the peripheral pulse which is synchronized to each 

heartbeat [6] [7].  

Basic photoplethysmography requires two opto-electronic components, a light 

source and a photodetector. The light source is needed to illuminate the tissue 

(e.g. skin) and the photodetector to detect the small variations in light intensity 

(absorbance) accessioned with changes in perfusion in the catchment volume. 

Pulse oximetry mostly operates in red or/and infrared wavelength. Its most 

recognizable waveform feature is the peripheral pulse, which is synchronized to 

each heart beat [8]. The resulting pulsating photoplethysmography waveform is 

often called the “AC” component representing the heartbeat. This “AC” waveform 

is super imposed by a large quasi “DC” component that relates to the tissues and 

to the average blood volume. This “DC” component changes slowly depending on 

respiration, vasomotor activity and vasoconstrictor waves [6].  

Beside the information about the cardiovascular system, PPG can also be used for 

measuring changes in the blood oxygen saturation. Pulse oximetry uses two 

monochromic light sources in different wavelength, one in the red and one infrared 

(IR) regions. These two light sources are set in relation to measure the saturation 

of peripheral oxygen (SpO2). SpO2 is defined as the percentage of the 

concentration of oxygenated blood cells compared to the sum of concentration in 
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reduced oxygenated blood cells (haemoglobin) and oxygenated blood cells in 

arterial blood [9].  

Pulse oximeters can operate in two modes, the transmission and the reflectance 

mode. Devices operating in the transmission mode detect the transmitted light 

(through a medium, for example fingers or earlobe) using a photodetector opposite 

to the source LED, while the reflective pulse oximeters detect reflected light from 

tissue, bone or blood vessels [10].  

2.3.3 Other techniques 

2.3.3.1 Oscillometry 

The technique of Oscillometry is mostly used for commercially available automated 

blood pressure monitors. They detect the amplitude of oscillations impinged on an 

arm cuff by brachial artery pulses. The underlying artery is occluded by inflating 

the cuff rapidly and then deflated gradually. The cuff pressure oscillations increase 

until they reach a peak and then they decrease. The cuff pressure at which the 

maximum oscillations occur relates to the mean arterial pressure [11].  

2.3.3.2 Phonocardiography 

A phonocardiogram (PCG) is the recording of the heart sounds resulting from its 

activity. Therefore, it allows important conclusions on the mechanical action of the 

heart. This technique is commonly used to detect heart lesions producing extra 

sounds like murmurs, clicks, snap, third and fourth heart sounds [12].  
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3 State of the Art 

To cover the topic of heart rate monitoring including HRV (heart rate variability) 

analysis using photo plethysmography technology (PPG), an extensive literature 

research was conducted. 

3.1 Electrocardiogram (ECG)  

The most popular method of deriving the heart rate signal is to acquire the 

electrocardiogram (ECG) signal which can afterwards be analysed using 

appropriate software [13]. The ECG is considered as a gold standard in HRV 

analysis although frequent fluctuations in base line signal are present as well as 

frequent contamination of ECG signal due to electrode movement and 

electromyography (EMG) interference due to muscular activity [13].  

3.2  Photoplethysmography (PPG) 

The second popular method to acquire and analyse the HRV signals are heart rate 

belts and wrist monitors offered by Polar, Sagunto, Garmin etc. The reliability and 

accuracy of such methods in HRV analysis is well established in research literature 

[14]–[18]. In recent years, Photoplethysmography (PPG) has been established as 

a new method or possibility to measure and acquire HRV signals. PPG is 

performed by combining an infrared emitter and detector inside a probe placed on 

the forefinger. The infrared light is emitted through the blood vessels in the finger 

and reflected off the bone or tissue (Figure 5). A blood pressure signal is derived 

from the effect that the changing blood volume has on the reflected infrared light 

[13]. The utility of PPG as a reliable method for measurement of HRV is recent 

demonstrated in research literature [19], [20].  
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Figure 5: Photoplethysmography (PPG) Technology [21] 

Shcherbina et al. [22] assessed the accuracy of seven commercially available 

wrist-worn devices, such as Apple Watch, Fitbit Surge, Microsoft Band etc., in 

estimating heart rate and energy expenditure (EE) to propose a wearable sensor 

evaluation framework. Their results show that most wrist-worn monitoring devices 

report heart rate with acceptable error range (5%) under controlled laboratory 

conditions of walking, running and cycling. Covariates such as darker skin tone, 

larger wrist circumference and higher BMI of the group of tested individuals were 

found to correlate positively with increased heart rate error rates across multiple 

devices. Device errors happened to be lower for running vs. walking but higher at 

higher levels of intensity within each modality [22].  

Figure 6 shows the median error rate of wrist-worn devices across activities. An 

acceptable error range was defined as <5% (dark blue). Light blue, white and 

yellow shading indicates errors outside this range [22]. 

 

Figure 6: Median device error across activities 



 

17 

3.3 PPG vs. EEG 

In the study of Bolanos et al. (2006), the agreement between PPG and ECG 

obtained HRV signals has been investigated [13]. The results from their study have 

demonstrated excellent agreement between those two methods and they have 

supported the idea of using PPGs instead of ECGs in HRV signal derivation and 

analysis in cardiac monitoring. 

The same agreement was observed by Lu et al. (2008) [23]. They have 

simultaneously acquired PPG and ECG signals for ten healthy subjects. In 

conclusion, they have verified the feasibility of the PPG by comparing both time 

and frequency-domain parameters of the HRV, which all demonstrated high 

correlation between the two signals [23]. 

Furthermore, the significant positive agreement between heart rate belts and PPG 

in terms of HRV assessment was recently observed in the study of Vasconcellos 

et al. [15]. They have simultaneously conducted HRV recordings using ECG, PPG 

and Polar RS800cx watch. They demonstrated that HRV data obtained from Polar 

RS800cx and PPG appear to be as accurate and reproducible as data from ECG 

when evaluating the autonomic control of heart rate at rest [15]. 

Similar conclusion can be drawn from a study of Gonçalves et al., which compares 

ECG and PPG signals to evaluate signal loss and maternal heart rate (MHR) 

variability indices during the last two hours of labour. Their results show that signal 

loss was higher with ECG during the first segments of the first hour and higher with 

PPG in the last segment of the second hour. Signal loss increased in both signals 

with labour progression. MHR variability indices were significantly different when 

acquired with ECG and PPG signals. It shows low correlation coefficients and high 

disagreement for entropy and fast oscillation-based indices, and low disagreement 

for the mean MHR and slow oscillation-based indices. Nevertheless, the study 

considers PPG as an alternative for MHR monitoring during labour [24]. 

3.4 PPG peak detection 

Elgendi et al. propose an algorithm that is more robust against effects of post-

exercise measurement in non-stationarity during hot/humid conditions. The results 

show that the proposed method is able to detect systolic peaks correctly in non-

stationary PPG signals before exercise. In case of non-stationary PPG signals 

produced after exercise, the algorithm did incur a few instances of failure. The 

cause of the failure is due to the extremely low amplitude systolic waves in heat-

stressed PPG signals. They apply an event-related dual moving average for real-

time application and processing of large databases [25]. 
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Figure 7: Flowchart for the proposed method/algorithm [25] 

As Figure 7 shows, the signal is processed using a Bandpass Filter which removes 

the baseline wander and high frequencies. Squaring emphasises the large 

differences resulting from the systolic wave, while suppressing the small 

differences of the PPG signal. Blocks of interest are generated based on two 

moving averages, one to emphasise the systolic peak area while the second one 

is used as a threshold for the first moving average. Thresholding is used to 

eliminate blocks that are smaller than the expected width for the systolic beat 

duration, which are considered as noisy blocks.  

 

Figure 8: Blocks of interest based on two moving averages [25] 
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4 Hardware design and sensor 
technology  

To achieve the ambition of a low cost real-time heart rate monitoring system, 

various sensors and microcontrollers were tested and evaluated.  The following 

sections describe the progress of the development and the used hardware.  

4.1 Sensor hardware 

4.1.1 Early developments and prototypes 

The first experiments and prototypes were developed using the ‘e-Health Sensor 

Platform’ offered by cooking hacks©, an online shop for electronics for makers (Do-

it-yourself culture) and the education community [26]. Their e-Health Sensor 

Platform provides various biometric sensors for measuring vital signs like pulse 

and oxygen saturation, heart rate, muscle activity, glucose in blood, breathing, 

patient position, body temperature, sweating and blood pressure. The platform can 

be interfaced using an Arduino microcontroller or a Raspberry Pi microcomputer 

[27].  

 

Figure 9: First experimental prototype 
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Figure 9 shows the very first experimental prototype using the Blood and Oxygen 

in Blood Sensor (lower left corner) attached to an Arduino microcontroller (upper 

left corner) which processes and monitors the heart rate and oxygen saturation 

signal. The first approach of hardware components could not be pursued due to 

the limitations of the used sensor. The sensor only provides calculated heart rate 

values in beats per minute which cannot be used for the calculation of the heart 

rate variability [28]. 

The next approach was the use of the commercially available Bluetooth finger-clip 

oximeter Berry Pulse Oximeter BM1000C. The sensor sends biometric data via 

Bluetooth and provides a BCI communication protocol for developers (see Figure 

10) [29]. 

   

Figure 10: Berry Bluetooth Pulse Oximeter (left), technical specifications and BCI 

communication protocol (middle), developed mobile application (right) 

A mobile Android application was developed in order to monitor and record the 

provided biometric data as the raw pulse signal, peak-to-peak interval in 

milliseconds and the peripheral oxygen saturation (SpO2). A screenshot of the 

application is presented in Figure 10 (right). Despite the offered communication 

protocol and software development opportunities of this device, a significant signal 

loss was experienced during test-recordings. The device did not detect the same 

amount of heart beats compared to other devices, namely Polar H7 chest strap as 

well as the ModernDevice sensor. Therefore, the Berry Bluetooth Pulse oximeter 

resulted as inappropriate for accurate heart rate variability monitoring. During a 

concurrent recording of five minutes, the Berry Bluetooth Pulse Oximeter delivered 

420 RR-interval values, while the self-implemented ModernDevice sensor 

delivered 580 values (see Figure 11).  
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Figure 11: Comparison of delivered values for the RR-interval 

4.1.2 Final Prototype 

After the research and testing of various sensors, the most appropriate solution 

was combining the low-cost “Pulse/SPO2” sensor by Modern Device© and the 

Wifi-Microcontroller Wemos D1 mini which are described in the following 

subchapters. 

4.1.2.1 Sensor 

As mentioned above, the “Pulse/SPO2” sensor from Modern Device© (see Figure 

12) was used for the final prototype. The sensor uses the Silicon Labs© SI1143 

chip, which was originally designed for proximity sensing, but equipped with the 

necessary parts for pulse and oxygen saturation sensing. The sensor is outfitted 

with two infrared LEDs, one red LED and two photodiodes. LEDs in different 

wavelength are needed for sensing and calculating the oxygen saturation in blood 

(see chapter “5.1.2 Calculation of the blood oxygen saturation”). The chip provides 

digital control (I2C) over all resources [30]. 

 

Figure 12: Modern Device's Pulse / SPO2 Sensor 
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4.1.2.2 Microcontroller 

For signal processing and signal transmission a small Wi-Fi microcontroller board, 

based on the ESP-8266, was used [31]. The following subsections give a technical 

overview on the components of the developed device. 

4.1.2.2.1 ESP-8266  

The ESP-8266 is a microcontroller designed by the Chinese company Espressif 

Systems©. It advertises itself as a self-contained Wi-Fi networking solution offering 

itself as a bridge from existing microcontrollers to Wi-Fi. The original size of the 

chip makes impossible to use it for prototyping. Therefore various 3rd party, so 

called OEMs (Original Equipment Manufacturers), such as Wemos©, are taking 

those chips and building “breakout boards” for prototyping purposes [32]. Table 1 

shows the technical specifications of the ESP-8266. 

Table 1: ESP2-866 specifications [32] 

Voltage 3.3 V 

Current consumption  10uA – 170 mA 

Flash memory attachable  16MB mag (512K normal)  

Processor Tensilica L106 32bit  

RAM 32K + 80K 

GPIOs  17 (multiplexed with other functions)  

Analog to Digital 1 input with 1024 step resolution 

802.11 support b/g/n/d/e/i/k/r  

Maximum concurrent TCP 

connections  

5 

  

4.1.2.3 Wemos D1 mini 

Due to the ambition to keep the device as small and simple as possible the 

ESP8266 “breakout board” Wemos© D1 mini was used. The board measuring no 

more than 31x22 mm makes it one of the smallest WIFI-boards available on the 

market. Wemos© provides additional stackable sheets for further functionality such 

as battery shields, LED shields or micro SD card shields.  
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Figure 13: Wemos© D1 mini & available stackable shields [33] 

4.1.2.4 Final setup 

The final prototype includes the following hardware components: 

 Wemos© D1 mini board (ESP-8266) 

 Modern Device Pulse/SpO2 (Silicon Labs© SI1143) 

 Battery shield 

 Lithium-ion polymer battery (3.7V / 700mAh)  

Figure 14 shows the final prototype and its components. The Pulse/SPO2 sensor 

measures the light reflectance in the microvascular blood tissues. The Wemos© 

D1 mini is responsible for Wi-Fi-connection, I2C-communication with the 

Pulse/SPO2 sensor as well as signal processing. To provide a wireless device, a 

battery shield and a lithium-ion polymer battery supplies the device with power.  
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Figure 14: Final prototype and its components 
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5 Methodology  

This chapter provides information on sensing, detection and evaluation of the 

variables of interest: RR-intervals and blood oxygen saturation. 

5.1 Heart beat detection and the calculation 
of the blood oxygen saturation 

As described in chapter “2.3.2 Photoplethysmography (PPG)” the developed 

device is capable of sensing the heart rate and the oxygen saturation. It operates 

in the reflective mode, and therefore detects the reflected light from tissue from the 

finger.  

In the following sections, the proceeding for the detection of the heart beats as well 

as the calculation of the blood oxygen saturation values is explained. 

5.1.1 Heart beat sensing & detection 

5.1.1.1 Heart beat sensing 

Only a very small amount of reflective light is responsible for sensing the pulsatile 

component of artery blood, which is used to calculate heart beats per minutes 

(bpm) as well as heart rate variability. Almost 90% of the applied light is reflected 

by skin and tissue [34], [10]. 

 

Figure 15: Variation in light attenuation by tissues of blood [10] 

Figure 15 shows an example of a photoplethysmographic waveform divided in 

layers depending on the tissues of blood. Most changes in blood flow occur 
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primarily in the arteries and arterioles and not in the veins. For instance, arteries 

contain more blood volume during the systolic phase of the cardiac cycle than 

during the diastolic phase which can be observed in the PPG waveform [10].  

5.1.1.2 Heart beat detection 

As mentioned above, arteries widen and contract with each heart beat. During the 

systole, the phase in which the ventricle of the heart contract and blood pressure 

rises, the relatively thicker arteries increase the absorption of light. During diastole, 

when the ventricle of the heart relaxes and the blood pressure falls, the relatively 

thinner arteries decrease the absorption of light. To perform heart rate variability 

analysis and to calculate the beat per minute, the valleys between two heart beats 

have to be measured and calculated. For an accurate detection of peaks and 

valleys, the following steps should be applied [34]:  

  Low and High Pass Filtering 

Low and high pass filtering helps to remove noise resulting from the 

environment (e.g. ambient light or electromagnetic interferences). 

 Separation of the AC part 

Due to possible motion artefact, the baseline shifts during the 

measurement making more difficult to detect peaks and valleys. 

Therefore, the baseline should be computed e.g. by averaging the 

signal over time. The AC part can be isolated by subtracting the 

computed baseline of the total signal.  

 Moving average filtering 

To smooth the resulting waveform from the steps above, a simple 

moving average filter can be applied. 

5.1.2 Calculation of the blood oxygen saturation 

To calculate the oxygen saturation of the blood (SpO2), instead of summing up the 

signals of both wavelength, they are set in relation. SpO2 is defined as the 

percentage of the concentration in oxygenated blood cells (cHbO) compared to the 

sum of concentrations of reduced oxygenated blood cells (cHb) and oxygenated 

blood cells in arterial blood [9]:  

𝑆𝑝𝑂2 =
c𝐻𝑏𝑂

𝑐𝐻𝑏𝑂 + 𝑐𝐻𝑏
 

Equation 1 

It is possible to use reflected light to calculate SpO2 thanks to the haemoglobin 

within red blood cells. Those cells are essential for oxygen transport by blood, 
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since they carry about 97% of the blood’s oxygen. In the human blood, different 

species of haemoglobin are present which are distinguished as functional and 

dysfunctional haemoglobin. Functional haemoglobins are able to bind oxygen 

reversibly. A fully saturated haemoglobin is revered to as oxyhaemoglobin (HbO) 

while all other not fully saturated functional haemoglobins are called reduced 

haemoglobin (Hb) [35]. This oxygenated haemoglobin can be detected over the 

reflection of red light. By measuring the ratio of absorbance of light at two 

wavelengths Aλ1 and Aλ2 where oxyhaemoglobin and reduced haemoglobin have 

different absorption coefficients, the ratio of oxygenated haemoglobin to total 

haemoglobin can be determined  [36], [37]:  

𝑅 =
Aλ1

𝐴λ2
 

Equation 2 

The wavelength of red and infrared light meet with the above stated requirements. 

Figure 16 shows the different absorption spectra for oxyhaemoglobin and 

deoxyhaemoglobin at the two wavelengths of red and infrared light. 

 

Figure 16: Absorption spectra of Hb and HbO [9] 

The ratio between the concentrations of the deoxygenated blood and oxygenated 

blood is proportional to the ratio of red light absorption and the infrared light 

absorption. To receive the absorbance information  Aλ1 and Aλ2 the Beer-Lambert 

law can be used, which states that the absorbance A results from the relationship 

between the light of intensity I0 and the emitted light I1 after passing I0 through an 

absorbing medium:  
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𝐴 = ln (
𝐼0

𝐼1
) = 𝜀𝑐𝑑 

Equation 3 

ε represents the extinction coefficient, which relates to the light absorption of the 

medium while d is the distance travelled by the light (cm) and c is the concentration 

of the absorbing medium (mol/L). By using the ratio of light measured by the 

photoreceptor at the peak (Iλhigh) and through (Iλlow) of the heartbeat cycle, it is 

possible to obtain independent information of the absolute light intensity I0 of the 

light emitting diode and independent of tissue that do not contain arterial blood.  

The total absorbance of a mixture of elements with varying absorbencies can be 

determined using the Beer-Lambert law as the sum of individual absorbencies: 

𝐴𝜆 = 𝜀𝜆𝐻𝑏𝑐𝐻𝑏𝑑 + 𝜀𝜆𝐻𝑏𝑂𝑐𝐻𝑏𝑂𝑑 

Equation 4 

By combining equations Equation 3 and Equation 4 the ratio between red and 

infrared absorbencies can be written as: 

𝐴 =
𝐴𝑅

𝐴𝐼𝑅
=

ln (
𝐼𝑅ℎ𝑖𝑔ℎ

𝐼𝑅𝑙𝑜𝑤
)

ln (
𝐼𝐼𝑅ℎ𝑖𝑔ℎ

𝐼𝐼𝑅𝑙𝑜𝑤
)

=
𝜀𝑅𝐻𝑏𝑐𝐻𝑏 +  𝜀𝑅𝐻𝑏𝑂𝑐𝐻𝑏𝑂𝑑

𝜀𝐼𝑅𝐻𝑏𝑐𝐻𝑏 +  𝜀𝐼𝑅𝐻𝑏𝑂𝑐𝐻𝑏𝑂𝑑
 

Equation 5 

Substitute 𝑐𝐻𝑏 and 𝑐𝐻𝑏𝑂 by the function of arterial oxygen saturation by using 

Equation 6 to derive 𝑅 as a function of 𝑆𝑝𝑂2: 

𝑅 =  
𝜀𝑅𝐻𝑏 + (𝜀𝑅𝐻𝑏𝑂 −  𝜀𝑅𝐻𝑏)𝑆𝑝𝑂2

𝜀𝐼𝑅𝐻𝑏 + (𝜀𝐼𝑅𝐻𝑏𝑂 −  𝜀𝐼𝑅𝐻𝑏)𝑆𝑝𝑂2
 

Equation 6 

The rearranged equation gives as result the theoretical saturation from the ratio of 

the measured, normalised absorptions in red and infrared light: 

𝑆𝑝𝑂2 =  
𝜀𝑅𝐻𝑏 −  𝜀𝑅𝐻𝑏𝑂𝑅

𝜀𝑅𝐻𝑏 −  𝜀𝑅𝐻𝑏𝑂 + (𝜀𝐼𝑅𝐻𝑏𝑂 − 𝜀𝐼𝑅𝐻𝑏)𝑅
 

Equation 7 

The values needed for the evaluation of the ratio depend on the absorption 

coefficient of deoxygenated and oxygenated haemoglobin ()  and on the 

percentage of the haemoglobin which is oxygenated (𝑅). The value of 𝑅 is 

calculated from the four parameters derived from the sensor and the absorbencies 
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values are known and given as a function shown in Figure 16. The values of the 

two wavelengths most commonly used in pulse oximetry are: 

Table 2: Common wavelengths used in pulse oximetry and relative coefficients  

Wavelengths 𝜺𝑯𝒃 𝜺𝑹𝑯𝒃𝑶 

660 nm 0.81 0.08 

940 nm 0.18 0.29 

 

As mentioned above, the Beer-Lambert law is based on an approximation concept 

which states that the sum of transmitted and absorbed light is equal to the incident 

light. The incident light passing through human tissue is not only split into absorbed 

and transmitted light, e.g. some parts of the light are reflected, others are scattered. 

The Beer-Lambert law does not take these physical concepts into account and 

therefore the theoretical oxygen saturation differs from the empirical one as can be 

seen in Figure 17. 

 

Figure 17: Calibration curves for pulse oximeters [2] 
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6 Implementation, Testing  

6.1 Experimental setup 

Five different individuals (two female and three male participants) have been tested 

in “rest” and “stress” phases. During the “rest” phase, the subject is sitting, while in 

the “stress” phase, the subject rides a stationary bicycle (Crane exercise bike; 

Model: RB#35301). On the above-mentioned device, it is possible to set the 

intensity of the pedalling within a range that goes from 1 (minimum value, lightest 

intensity) to 8 (heaviest intensity). The selected value for the test is equal to 4.  

Table 3 gives an overview of the group of tested individuals considering mean age, 

height and body mass as well as the corresponding standard deviation.  

Table 3: Demographic information of subject 

 Age [y] Height [cm] Body Mass [kg] 

Mean value 

(SD) 

29 

(SD 18.67) 

175 

(SD 9.975) 

83 

(SD 11.415) 

 

Each subject is equipped with: 

- Developed PPG prototype on the right index finger; 

- ECG device, as described more in details in the paragraph “6.1.1.2 ECG”; 

- Pulse oximeter device on the right middle finger. 

Data acquired form PPG and ECG devices have been analysed and compared to 

evaluate the heart rate of each subject in each test condition. Data acquired using 

PPG and Pulse Oximeter devices have been analysed to determine the blood 

oxygen saturation value and then compared.  

The devices have been started simultaneously and data have been recorded for 6 

minutes. The measurements were started manually while each signal delivered an 

accurate time stamp in milliseconds (synchronised before each measurement) to 

synchronise the signals manually after the recordings using that time information. 

The initial and final 30 seconds have been cut to eliminate any fluctuations of the 

results due to possible non-stationary behaviour of the measuring devices, the 

central 5 minutes of the recordings have been analysed. 
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6.1.1 Process of Data Acquisition 

6.1.1.1 PPG 

The PPG signal of the developed prototype was acquired using serial 

communication. The real-time data was logged and stored as a text file using a 

sampling frequency of 300Hz. Table 4 shows four exemplary lines of the recorded 

PPG signals. Column 1 (Time) and 2 (Time [ms]) are essential for synchronising 

the recording with other measurement methods.  

Column 1 represents the Time in Hours, Minutes and Seconds while Column 2 

represents the internal milliseconds of the ESP2866 microcontroller.  Columns 3 

to 5 (Red, IR1, IR2 and total) show the actual measurement in different 

wavelengths representing the three LEDs (Red, Infrared1 and Infrared2) of the 

photodiode while Column 6 is the sum of all wavelength measurements.  

Table 4: Exemplary recorded PPG signal in text file 

Time 

[hh:mm:ss] 

Time  

[ms] 

Red  

[660nm] 

IR1 

[940nm] 

IR2 

[940nm] 

Total 

17:46:56 3775368 29189 9501 16933 55623 

17:46:56 3775372 29191 9501 16933 55625 

17:46:56 3775375 29197 9504 16942 55643 

17:46:56 3775378 29202 9511 16936 55649 

Sampling frequency [Hz] 300 

 

6.1.1.2 ECG 

The ECG signal was acquired using Plux’s BITalino Revolution Plugged Kit, a 

low-cost vital sign reading platform. The ECG signal was measured using three 

gelled, self-adhesive, disposable Ag/AgCl chest electrodes [38].  

The following electrodes placement was used:  

- Positive electrode: under right clavicular (under the right collar bone); 

- Negative electrode: under left musculus pectoralis major (under left 

pectoral muscle); 

- Reference electrode: under left clavicular (under the left collar bone). 
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The signal was sent using a sampling frequency of 1000Hz using Plux’s free to 

use software OpenSignals (r)evolution. The signal was sent via Bluetooth in real-

time to the application and stored in an additional text-file. Table 5 shows the 

recorded ECG signal. Column 1 and 2 indicate the time information while column 

3 refers to the measured ECG signal.  

Table 5: Exemplary recoded ECG signal in text file  

Time Time [ms] ECG signal [mV] 

13:05:06.001 1 577 

13:05:06.002 2 578 

13:05:06.003 3 578 

13:05:06.004 4 579 

Sampling frequency [Hz] 1000 

6.1.1.3 SpO2 

The oxygen saturation of the peripheral blood was acquired using a Berry® Pulse 

Oximeter BM1000C, the same as used in early prototyping stages (see “4.1.1 Early 

developments and prototypes”). The device delivers every second SpO2 values as 

well as the calculated participant’s heart rate in beats per minute (see  Table 6: 

Exemplary recoded SpO2 signal in text file). 

 Table 6: Exemplary recoded SpO2 signal in text file  

Time [dd:mm:yyyy] 

[hh:mm:ss] 

SpO2 [%] BPM (beats per 

minute) 

15/09/2017 13:05:06 97 65 

15/09/2017 13:05:07 97 66 

15/09/2017 13:05:08 97 66 

15/09/2017 13:05:09 98 66 

Sampling frequency [Hz] 1 

6.2 MathWorks MATLAB Script 

The analysis of the raw data has been performed using two scripts developed in a 

MATLAB environment. The first script allows the detection of the heart beat 
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through the signals acquired using the ECG and the PPG devices. With the second 

script, it is possible to manipulate data obtained using the PPG sensor to evaluate 

blood oxygen saturation values and, therefore, to compare these results to the one 

obtained with the Pulse Oximeter device.  

The procedure for RR-intervals and for blood oxygen saturation evaluation is 

described in the following paragraphs. The charts showed are examples taken 

from the results of a singular subject in the “rest phase”, but they can be 

generalised also to the other results. 

6.2.1 Algorithm for RR intervals evaluation 

The algorithm for the RR intervals evaluation is summarised in the figure below. 

 

Figure 18: Algorithm for RR interval detection 

The 5 minutes recorded data are uploaded in the form of a matrix.  

The following figure shows how the raw data, without any manipulation, look like.  

Data uploading
Data 

manipulation

Interpolation of PPG 
signal

Filtering of PPG and 
ECG signals

Allignment of the 
PPG and ECG signals

RR interval 
evaluation

Detection of 
positive peaks

Filtering of peaks 

Findings of pairs and 
errors
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Figure 19: ECG and PPG signals, raw data 

The ECG and PPG devices are characterised by two different sampling rates, 

namely the ECG has a higher sampling rate than the PPG signal. The ECG and 

PPG vectors have two different lengths and it is necessary to interpolate the PPG 

signal, in order to obtain a vector with the same length as the ECG one’s.   

Listing 1: Increasing PPG signal’s sampling rate 

Xq = (1:1:ECGlength); 

PPGinterp = interp1(PPGtime,PPGtotal,Xq,'pchip'); 

Matlab®’s “interpl” function increases the original sampling rate of a sequence to 

a higher rate. The function returns a vector of interpolated values PPGinterp 

corresponding to the query points in Xq (time vector of the ECG recording). The 

values of PPGinterp are determined by shape-preserving piecewise cubic 

interpolation of PPGtime (time vector of the PPG recoding) and PPGtotal (sum of 

the derived PPG recording – red and two times infrared red) [39], [40]. 

After the interpolation of the PPG signal, the two vectors have the same length and 

the result is showed in Figure 20. 
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Figure 20: ECG and PPG (interpolated) signals 

The two signals have to be filtered in order to make the process of peak detection 

easier and more effective. The MATLAB® function butter returns the transfer 

function coefficients bPPG and aPPG of a 2nd-order low pass digital Butterworth 

filter with a lower cut-off frequency of 0.8 Hz and a higher cut-off frequency of 8 Hz 

[41]. Filtfilt performs a zero-phase digital filtering by processing the input PPG data 

PPGinterp, in both the forward and reverse directions [42]. This latter reduces the 

noise in the signal and preserves the occurring of the peaks at the same time as it 

occurs in the original. With conventional filtering the noise would be reduced but 

there would be also a delay in the occurrence of the peaks. The filter reduces the 

baseline wander and high frequencies that do not contribute to the systolic peak 

[43]. Listing 2 shows the part of the MATLAB® code for filtering the PPG as well 

as the ECG signal.  

 

Listing 2: Filtering of ECG and PPG signals 

[bPPG,aPPG]=butter(2,[0.8, 8]/500); 

filteredPPG = filtfilt(bPPG,aPPG,PPGinterp);  

  

[bECG,aECG]=butter(2,[4, 50]/500); 

filteredECG = filtfilt(bECG,aECG,ECG(:,1));    

Both ECG and PPG signals are filtered and normalised. Figure 21 below shows 

the result of these operations. 
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Figure 21: ECG and PPG signals, filtered and normalised 

The alignment of the two signals is performed using the cross-correlation “xcross” 

function. The cross-correlation of two discrete time-sequences allows to find the 

similarities in the signals and to measure the lag time between them [44].  

Listing 3 describes the alignment of the ECG and the PPG signals. The cross-

correlation of the two signals is maximum at a lag equal to the delay ( [~,I] = 

max(abs(acor));). Then the lag-difference is expressed as number of samples 

lagDiff as well as in seconds timeDiff. Finally the signal (s1al) and time (t1al) 

vectors can be aligned [44].  

Listing 3: Alignment of the ECG and PPG signals 

s2 = filteredPPG; 

s1 = filteredECG; 

Fs = 1000; 

  

t1 = (0:length(s1)-1)/Fs; 

t2 = (0:length(s2)-1)/Fs; 

  

[acor,lag] = xcorr(s2,s1); 

  

[~,I] = max(abs(acor)); 

lagDiff = lag(I); 

  

timeDiff = lagDiff/Fs; 

 

s1al = s1(-lagDiff+1:end); 
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t1al = (0:length(s1al)-1)/Fs; 

 

Figure 22 shows the result of the aligning process. It is possible to see the ECG 

signal (blue line) aligned to the PPG (red line) and the ECG not aligned signal 

(yellow line). 

 

Figure 22: ECG and PPG aligned signals 

At this stage, peak detection is performed: positive peaks are evaluated for the two 

signals.  

Listing 4: Positive peaks evaluation 

findpeaks(s1al,'MinPeakProminence',150, 'MinPeakDistance',300); 

[pksECG,locsECG]=findpeaks(s1al,'MinPeakProminence',150, 
'MinPeakDistance',300); 

hold on 

findpeaks(s2,'MinPeakProminence',100,'MinPeakDistance',300);  

[pksPPG,locsPPG]=findpeaks(s2,'MinPeakProminence',100,'MinPeakDistance',30
0); 

 

The “findpeaks” function is used to detect the peaks in the signals and two 

additional input parameters are selected: “MeanPeakPromincence” and 

“MeanPeakDistance”. The first allows to set the mean peak prominence, namely 

the amplitude, of each peak, in such a way that small peaks not relevant to the RR-

intervals evaluation are detected. The “MeanPeakDistance” is used to set the 

mean distance between two peaks and it is also used to reduce the possibility of 

mistaken peaks. 
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Figure 23: ECG and PPG peak detection 

After the peaks evaluation, it is necessary to find the “pairs” between them. The 

ECG is considered as a “master” signal and the average distance between the 

peaks is evaluated. Then, each ECG peak is coupled to a PPG peak if the distance 

between them is less than to 30% of the average distance. When this condition is 

not verified, the peak in the PPG signal is considered as an “error” and, therefore, 

it is not taken into account for the RR-interval evaluation. The same considerations 

are valid for the ECG peaks detection.    

 

Figure 24: RR-intervals detection for ECG and PPG signals 
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Figure 24 shows the RR-intervals evaluated for the PPG and ECG signal. It is 

possible to notice that they are in good agreement. 

6.2.2 Algorithm for blood oxygen saturation evaluation 

The summary of the procedures followed to evaluate the blood oxygen saturation 

values are described in the figure below. 

 

Figure 25: Algorithm for blood oxygen saturation evaluation 

Data concerning the 5 minutes’ recordings obtained using simultaneously PPG 

and Pulse Oximeter devices have been uploaded in the form of a matrix. 

The PPG device gives as outputs values related to the red, infrared and total 

reflected light. The theoretical background regarding the blood oxygen saturation 

evaluation is given in chapter “5.1.2 Calculation of the blood oxygen saturation”. 

The following evaluations have been performed taking into account Equation 5 and 

Equation 7. 

The Pulse Oximeter device gives as output a blood oxygen saturation value every 

second. The sampling rate of the PPG device is equal to 300 Hz; therefore, an 

interpolation of the PPG signal is necessary to have corresponding values between 

the two signals.  

After the interpolation, the two signals are filtered, as follows. 

Listing 5: Interpolation and filtering of the red and infrared PPG signals 

Xq = (1:1:300001); 

REDinterp = interp1(time,red,Xq,'pchip'); 

IR2interp = interp1(time,ir2,Xq,'pchip'); 

 

[bPPG,aPPG]=butter(2,[0.8, 8]/500); 

Data uploading Data manipulation

Interpolation of PPG 
signal

Filtering of PPG (IR 
and RED signals)

Blood oxygen 
saturation 
evaluation

Detection of positive 
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Generation of peak 
line vectors

Evaluation of R
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REDfiltered = filtfilt(bPPG,aPPG,REDinterp);  

IR2filtered = filtfilt(bPPG,aPPG,IR2interp);  

 

The result of these manipulations is shown in Figure 26.

 

Figure 26: Red and infrared signals, interpolated, filtered 

The calculation of the blood oxygen saturation values requires the evaluation of 

positive peaks of the curves shown in the figure above (see Figure 26).   

The “findpeaks” function is used to evaluate the intensity of the peaks and their 

locations on the x axis. The above-mentioned function requires 

“MinPeakProminence” and “MinPeakDistance” values. Listing 6 shows the 

developed code for the peak detection of the red and infrared light. 

Listing 6: Evaluation of the positive peaks of the red and infrared signals 

minpeakdistance = 450; 

minpeakprominence = 13; 

minpeakprominenceIR = 20; 

   

[pksIR2,locsIR2]=findpeaks(filteredIR2,'MinPeakProminence',
 minpeakprominence,'MinPeakDistance',minpeakdistance); 

hold 

[pksRED,locsRED]=findpeaks(filteredRED,'MinPeakProminence',
 minpeakprominence,'MinPeakDistance',minpeakdistance); 

 

After the evaluation of peaks in both wavelength (red and infrared), a continuous 

vector representing the peaks was computed. Figure 27 shows the detected peaks 

(“peaks IR” and “peaks red”) as well as the computed, continuous peak vector 
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(“peak line IR” and “peak line red”) which is essential for calculating the ratio 

between both signals. 

 

Figure 27: Detection of positive peaks and computed peak lines 

A mean value for each second (1000 samples) of the computed peak signal was 

used in order to make it fit to the reference value derived from Berry©’s Pulse 

Oximeter sampling rate. The ratio of the signals was calculated using Equation 5 

described in chapter “5.1.2 Calculation of the blood oxygen saturation”.  

Listing 7: Computing mean vector, ratio, and filtered ratio 

n = 1000; 

meanIR = arrayfun(@(i) mean(pksREDinterp( 

         i:i+n-1)),1:n:length(pksREDinterp)-n+1);  

 

meanRED = arrayfun(@(i) mean(pksREDinterp( 

         i:i+n-1)),1:n:length(pksREDinterp)-n+1);  

 

ratio = log(meanIR).*(log(meanRED).^-1); 

 

ratioFiltered = smooth(ratio, 0.3, ‘rloess’); 

 

 

The derived ratio was filtered by MATLAB©’s smooth function using rloess as 

method, which assigns lower weight to outliers in the regression. This procedure 

helps to remove occurred motion artefacts. Figure 27 shows the computed ratio 

(blue line), the filtered ratio (red line) and motion artefacts (red circles) in the 

original raw signal.  
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Figure 28: Ratio (IR, RED) - raw and filtered 

Consequentially the blood oxygen saturation (SpO2) can be evaluated for each 

value of the filtered ratio (see Listing 8: Calculation of the blood oxygen saturation). 

Figure 29 shows the trend of the blood oxygen saturation detected using the Berry 

Pulse Oximeter BM1000C device and the value of the developed prototype 

computed using the above-mentioned algorithm. It is possible to see that the 

results, despite a small offset (mean offset is equal to 9.67%), show good 

accordance.  

Listing 8: Calculation of the blood oxygen saturation 

for m = 1 : length (ratioFiltered) 

    spo2(:,m)=110-25*ratioFiltered(m); 

end 

 

Figure 29: Blood oxygen saturation (SpO2) 
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7 Results 

This chapter portrays the resulting evaluation of the experimental setup described 

in chapter “6 Implementation, Testing”. Paragraph 7.1 describes errors of the peak 

detection for the PPG and ECG signals. Furthermore, the derived results for RR 

intervals as well as results for blood oxygen saturation values are consider and 

compared mentioning mean values as well as the standard deviation of each signal 

and subject.  

7.1 Errors as not considered PPG peaks 

As described in chapter “6.2.2 Algorithm for RR intervals evaluation” some 

detected peaks of the PPG signal had to be considered as errors on the basis of 

their distance threshold (30% of the average peak distance) to the corresponding 

ECG peak.  

 

Figure 30: Absolute number of Errors in PPG peak detection for each subject during rest 

and stress phases 

 

Figure 30 illustrates the percentage of errors (relative to the total number of 

detected ECG peaks) for each subject occurred during rest and stress phases. The 

blue line indicates the mean error value (0.868%) during rest while the red line 
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indicates the value for the mean error (6.034%) during stress. The mean value of 

errors significantly increases from rest (0.868%) to stress phases (6.034%).   

7.2 RR intervals 

The procedure described in chapter 6.2.1 has been applied to all the datasets and 

the results are listed in the following table (see Table 7: Summary of the results for 

the five subjects in rest (R) and stress (S) phases). For each subject, the mean 

value of all computed RR intervals as well as the standard deviation using ECG 

and PPG signals are listed.  

Table 7: Summary of the results for the five subjects in rest (R) and stress (S) 
phases 

Subject, 

#_phase 

Mean value, 

RRECG 

Standard 

deviation, 

RRECG 

Mean value, 

RRPPG 

Standard 

deviation, 

RRPPG 

[ms] [ms] [ms] [ms] 

1_R 758.18 52.525 758.17 55.468 

2_R 641.56 15.761 641.54 16.880 

3_R 649.42 41.767 649.40 43.113 

4_R 978.19 29.621 978.13 31.295 

5_R 872.09 61.817 872.39 65.936 

 

1_S 603.88 24.043 603.81 25.441 

2_S 481.99 47.169 481.86 53.548 

3_S 574.65 23.136 575.79 42.402 

4_S 644.49 52.904 644.72 63.519 

5_S 672.16 27.809 671.30 46.836 

 

The results show that the mean values for the RR intervals are lower during the 

stress phase than in the rest phase, as expected. The mean values computed with 

the PPG and the ECG signals are basically the same. The standard deviation is 

generally within 10% of the mean value. The standard deviation value is higher 
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for the RR intervals evaluated using the PPG signal than the ones obtained using 

the ECG signal.  

The following figure (Figure 31) represents the data listed in Table 7. 

 

Figure 31: Mean values of RR intervals, evaluated using ECG and PPG signals 

with error bars  
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7.3 Blood oxygen saturation  

The procedure described in chapter 6.2.2 has been applied to all the datasets and 

the results are listed in the following table (see Table 8: Summary of the results for 

the five subjects in rest (R) and stress (S) phases). For each subject, the mean 

value of all calculated SpO2 values as well as the standard deviation using the PPG 

signal and the reference value of the Berry Pulse Oximeter BM1000C device are 

listed. 

Table 8: Summary of the results for the five subjects in rest (R) and stress (S) 
phases 

Subject, 

#_phase 

Mean value, 

SpO2 PPG 

Standard 

deviation, 

SpO2 PPG 

Mean value, 

SpO2 Berry 

Standard 

deviation, 

SpO2 Berry 

[%] [%] [%] [%] 

1_R 94 0.194 94 1.263 

2_R 95 0.085 98 0.426 

3_R 96 0.273 97 0.454 

4_R 98 0.339 97 0.436 

5_R 95 0.470 97 0.388 

 

1_S 94 0.481 94 0.536 

2_S 98 0.293 96 1.003 

3_S 98 0.105 96 0.538 

4_S 97 0.147 97 0.261 

5_S 98 1.064 97 0.507 

 

The results show that the general standard deviation values are lower using the 

PPG signal than the values derived by Berry©’s Pulse Oximeter.  Furthermore, a 

higher standard deviation during the subjects’ stress phase than during the rest 

phase can be observed.  

Figure 32 represents the derived data of Table 8 for each subject using error bars.  



 

47 

 

Figure 32: Mean values of blood oxygen saturation (SpO2), evaluated using Berry©’s 

Pulse Oximeter and PPG signals with error bars 
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8 Bland-Altman and regression 
analysis 

In the following sections, methods used for evaluating RR-intervals for both 

measurement systems are compared. The Bland-Altman analysis is proposed as 

a tool for the comparisons between the two methods.  

Regarding blood oxygen saturation measurement methods, their limitations in the 

comparability of the results will be explained.  

8.1 Comparison of RR-interval measurment 
methods 

8.1.1 Introduction to Bland-Altman plots 

Correlation quantifies the degree to which two variables are related. But a high 

correlation does not automatically imply that there is a good agreement between 

the two methods. The correlation coefficient and regression techniques are 

sometimes inadequate and can be misleading when assessing agreement, 

because they evaluate only the linear association of two sets of observations [45]  

In 1983 Altman and Bland (B&A) proposed an alternative analysis, based on the 

quantification of the agreement between two quantitative measurements, by 

studying the mean difference and constructing limits of agreement [45]. These 

statistical limits are calculated by using the mean and the standard deviation (SD) 

of the differences between two measurements.  

A graphical approach is used: the difference between the two paired 

measurements is plotted against the mean of the two measurements. Bland and 

Altman recommended that the 95% of the data points should lie within ± 1.96 SD 

of the mean difference.  

The following figures (from Figure 33 to Figure 42) are the results of the 

comparisons of all the RR intervals evaluated using ECG and PPG signals. Each 

chart on the left side is the correlation plot, where the RRECG values are plotted 

versus the RRPPG values. Each chart on the right side, is the Bland-Altman plot, 

where the differences between the results obtained using different devices are 

plotted versus the mean values of the two measurements. The symbols represent 

the data, while the lines correspond to the average value of the differences and 

the intervals of acceptability, namely ± 1.96 SD of the mean difference. 
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In general, a good agreement is obtained for the results related to the 

measurements performed during the rest phase, while during the stress phase the 

interval of acceptability is wider. 

8.1.2 Regression & Bland-Altman plots during rest phase 

As mentioned above, the results related to the measurements performed during 

rest phase show good agreement. The following five figures describe the evaluated 

results and are structured equally. 

 On the left side, the regression plot of the two measurement methods is 

shown to statistically describe how strongly the pairs of RR-interval values 

are related. The x-axis of the regression plot characterizes the RR-intervals 

obtained by the ECG device while the y-axis represents corresponding RR-

intervals measured by the PPG device. On the left upper side of the figures, 

the text-box gives additional information in regarding to: the equation of the 

regression line interpolating the data, the coefficient of determination (r2), 

the sum of the squares of the errors (SSE [ms]) and the number of values 

considered in the analysis (n). 

 On the right side, a Bland-Altman plot shows the agreement of the RR-

interval measurements within a range of agreement, as described above 

in the introduction to the Bland-Altman plot.  

 

Figure 33: B&A plot – Subject 1 (Rest) 

The measurements of the first subject (see Figure 33, left side) show a high 

correlation, namely a determination coefficient of r2=0.97. The differences between 

the two measurements can be seen better in the Bland-Altman plot (see Figure 33, 

right side), which define as bias -0.01 ms, and an agreement range from -18 to +18 

ms which is equal to 1.96SD. The limit of agreement is 18 ms, while 2.4% of 

values are not lying within the agreement range.  
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Figure 34: B&A plot – Subject 2 (Rest)  

Figure 34 (left side) shows a determination coefficient of r2=0.92 for subject 2. The 

Bland-Altman analysis of this subject shows the best result (see Figure 34, right), 

which define as bias -0.02 ms, and an agreement range from -9.1 to +9.1 ms equal 

to 1.96SD. The limit of agreement is 9.1 ms, while 1.4% of values are not lying 

within the agreement range.  

 

Figure 35: B&A plot – Subject 3 (Rest) 

Figure 35 (left side) describes a determination coefficient of r2=0.92 for subject 3. 

The Bland-Altman analysis (see Figure 35, right) of this individual shows slightly 

higher bias of 0.29 ms, and an agreement range from -31 to +31 ms equal to 

1.96SD. The limit of agreement is 31 ms, while 3.6% of values are not lying within 

the agreement range.  
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Figure 36: B&A plot – Subject 4 (Rest) 

Figure 36 (left side) describes a lower determination coefficient of r2=0.89 for 

subject 3 compared to previous subjects. The Bland-Altman analysis (see Figure 

36, right) of this individual shows a bias of -0.06 ms, and an agreement range from 

-20 to +20 ms equal to 1.96SD. Therefore, the limit of agreement is 20 ms, while 

2.1% of values are not lying within the estimated agreement range.  

 

 

 Figure 37: B&A plot – Subject 5 (Rest) 

 Figure 37 (left side) shows a determination coefficient of r2=0.94 for subject 5. The 

Bland-Altman analysis (see  Figure 37, right) of this individual shows a bias of 0.29 

ms, and an agreement range from -31 to +31 ms equal to 1.96SD. Therefore, the 

limit of agreement is 31 ms, while 3.6% of values are not lying within the estimated 

agreement range.  
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8.1.3 Regression & Bland-Altman plots during stress phase 

During stress phases the regression and Bland-Altman charts show generally 

lower results in the correlation of the derived RR-pairs as well as higher agreement 

range.  

 

Figure 38: B&A plot – Subject 1 (Stress) 

The measurements of the first subject (see Figure 38, left side) shows the highest 

correlation within the derived data during the stress phase, namely a determination 

coefficient of r2=0.97. The Bland-Altman analysis of this subject (see Figure 38, 

right side), shows a bias -0.08 ms, and an agreement range from -15 to +15 ms, 

equal to 1.96SD. The limit of agreement is 15 ms, while 2.5% of values are not 

located within the agreement range.  

 

Figure 39: B&A plot – Subject 2 (Stress) 

Figure 39 (left side) describes a determination coefficient of r2=0.92 for subject 2. 

The Bland-Altman analysis (see Figure 35, right) of this individual shows slightly 

higher bias of 0.29 ms, and an agreement range from -31 to +31 ms equal to 

1.96SD. The limit of agreement is 31 ms, while 3.6% of values are not located 

within the agreement range.  
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Figure 40: B&A plot – Subject 3 (Stress) 

Figure 40 (left side) shows a determination coefficient of only r2=0.33 for subject 3, 

which represents the lowest correlation compared to other subjects during stress 

phase. The Bland-Altman analysis of this individual (see Figure 40, right), which 

define as bias -1.1 ms, and an agreement range from -69 to +67 ms equal to 

1.96SD. The limit of agreement is 68 ms, while 12% of values are not lying within 

the agreement range.  

 

Figure 41: B&A plot – Subject 4 (Stress) 

Figure 41 (left side) describes a determination coefficient of r2=0.69 for subject 4. 

The Bland-Altman analysis (see Figure 41, right) of this individual shows a bias of 

0.23 ms, and an agreement range from -69 to +70 ms equal to 1.96SD. Therefore, 

the limit of agreement is 69 ms, while 11 % of values are not located within the 

estimated agreement range.  
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Figure 42: B&A plot – Subject 5 (Stress) 

Figure 42 (left side) shows a determination coefficient of r2=0.44 for subject 5. The 

Bland-Altman analysis (see  Figure 37, right) of this individual shows a bias of -

0.86 ms, and an agreement range from -70 to +68 ms equal to 1.96SD. Therefore, 

the limit of agreement is 69 ms, while 10% of values are not lying within the 

estimated agreement range.  

8.1.4 Discussion of Bland-Altman and regression analysis 

The following Table (see Table 9) shows a combined collection of the retrieved 

results from Bland-Altman and regression analysis for all five subjects during their 

rest phase.  

Table 9: Collection of results of the Bland-Altman and regression analysis during 
rest phase 

Subject, 

#_phase 

Number of 

Samples 

Bias R2 LOA 

Values 

outside 

LOA 

[-] [ms] [-] [ms] [%] 

1_S 391  -0.01  0.97  18  2.4  

2_S 462  -0.02  0.92  9.1  1.4  

3_S 335  0.29  0.94  31  3.6  

4_S 296  -0.06  0.89  20  2.1  

5_S 335  0.29  0.94  31  3.6 

 

Minimum 296  -0.06  0.89  9.1  1.4  
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Subject, 

#_phase 

Number of 

Samples 

Bias R2 LOA 

Values 

outside 

LOA 

[-] [ms] [-] [ms] [%] 

Maximum 462  0.29  0.97  31  3.6  

Average  363.8  0.098  0.932  21.82  2.62  

 

The determination coefficient of the measurements varies from the lowest 

correlation r2=0.89 to the highest of r2=0.97. An average determination coefficient 

of r2=0.94 indicates strong linear relationship between the two measurement 

methods of all subjects.  

The limit of agreement (LOA) ranges from 9.1 to 31 ms, which means that at least 

95% of the differences between ECG and PPG measurements are included within 

a range of 31ms. The average limit of agreement of 21.82 ms indicates a good 

agreement within all measurements during rest phases.  

In contrast to the results during rest phases, the outcomes of Bland-Altman and 

regression analysis during stress phases show significant change. The results 

during stress phases are summarized in Table 10.  

Table 10: Collection of results of the Bland-Altman and regression analysis 
during stress phase 

Subject, 

#_phase 

Number of 

Samples 

Bias R2 LOA 

Values 

outside 

LOA 

[-] [ms] [-] [ms] [%] 

1_S 490 -0.08 0.91 15 2.5 

2_S 577 -0.13 0.77 50 10 

3_S 325 1.1 0.33 68 12 

4_S 445 0.23 0.69 69 5.5 

5_S 374 -0.86 0.44 69 10 

 

Minimum 325 -0.86 0.33 15 2.5 

Maximum 577 1.1 0.91 69 12 



 

56 

Subject, 

#_phase 

Number of 

Samples 

Bias R2 LOA 

Values 

outside 

LOA 

[-] [ms] [-] [ms] [%] 

Average 442.2 0.052 0.628 54.2 8 

 

The determination coefficient of the measurements varies from the lowest 

correlation r2=0.33 to the highest of r2=0.91. An average determination coefficient 

of r2=0.62 indicates a moderate relationship between the two measurement 

methods. Only the measurement methods of subject 1 show a strong linear 

relationship while those for subject 3 and 5 show a moderate to low linear 

correlation.  

The limit of agreement (LOA) ranges from 15 to 69 ms. The average limit of 

agreement of 54.2 ms indicates a drastically increasing LOA value by the factor 

2.48 compared to the average value of the results during rest. At the same time 

the average percentage of measurement values not included in the LOA range 

increases from 2.62% during rest phases to 8% during stress phases, which does 

not indicate good agreement of measurement methods. This result is also 

confirmed by the higher number for errors detected during stress phase, especially 

for the subjects 4 and 5, compared to the number of errors detected during the rest 

phase. 

8.2 Comparison of blood oxygen saturation 
(SpO2) measurement methods  

Comparing the results of blood oxygen saturation of the prototype and the 

reference device (Berry©’s Pulse Oximeter), the following limitations of the 

comparability occurred:  

 The reference device provided by Berry© has an accuracy of ±2% while 

delivering values for blood oxygen saturation [27].    

 The used algorithm for calculating blood oxygen saturation results would 

need clinical calibration based on empirical data to a known standard 

before providing reliable results [2].    

 Motion artefacts and light scattering, especially during subjects’ stress 

phases can distort the results of both devices.  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Therefore, Bland-Altman analysis as well as regression analysis are not used for 

statistical evaluation of each subject due to low correlation results.   Despite of 

low correlation indices, the mean measurements of rest and stress phases seem 

to be reasonable to the physical blood oxygen saturation compared to the 

reference Pulse Oximeter. Figure 43 shows the regression plot (left) and the chart 

for Bland-Altman analysis (right) for the mean blood oxygen saturation values of 

each subject during rest and stress phases. The regression plot shows a moderate 

determination coefficient of r
2
=0.70. The corresponding Bland-Altman analysis of 

shows a bias of 0.00%, and an agreement range from -1.8 to +1.8 % equal to 

±1.96SD. Therefore, the limit of agreement is 1.8 %, while 1.9% of values are not 

lying within the estimated agreement range which is below the accuracy limits of 

Berry©’s Pulse Oximeter (±2%).    

 

Figure 43: B&A plot of mean SpO2 values of each subject in rest and stress phases 
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9 Conclusion 

A low-cost prototype, fingertip reflective Bluetooth pulse oximeter using the method 

of photoplethysmography (PPG) was developed and evaluated to an 

electrocardiography device, considered as the golden standard for heart rate 

analysis. Five subjects’ peak-to-peak intervals were tested during five minutes’ rest 

(no physical exertion) and stress phases (moderate physical exertion).   

The results showed suitable agreement between the present device and ECG-

based device during rest phases (no physical exercise) phases. However, during 

phases of moderate physical exertion, the agreement between the mentioned 

devices dropped significantly by the average factor of 2.62. The results during 

stress phases showed moderate correlation and agreement.  

The calculated peripheral blood oxygen saturation (SpO2) during rest and stress 

phases showed a moderate agreement to a commercially available pulse oximeter, 

however for accurate results, the present device needs a clinical calibration based 

on a wide range of empirical data to a known standard. 

Considering the relatively bad results of the developed device during phases of 

moderate physical exertion, further investigation especially in resolving motion 

artefacts cause by slight movements of the body during this phase are needed. 

Therefore, acceleration based motion artefacts reduction should be considered in 

works for future developed prototypes.   
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