
IfhIII
st.pölten

Information Security

Speculative execution side-channel attacks

Exploring cause, impact and mitigations

Diplomarbeit

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

eingereicht von

Julian Simon Rauchberger

is161524

im Rahmen des

Studienganges Information Security an der Fachhochschule St. Pölten

Betreuung

Betreuer/in: FH-Prof. Dipl.-Ing. Dr. Sebastian Schrittwieser, Bakk.

St. Pölten, August 6, 2018

(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

*

Fachhochschule St. Pölten GmbH, Matthias Corvinus-Straße 15, A-3100 St. Pölten,T: +43 (2742) 313 228, F: +43 (2742) 313 228-339, E:office@fhstp.ac.at, I:www.fhstp.ac.at

Ehrenwörtliche Erklärung

Ich versichere, dass

• ich diese Diplomarbeit selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel

nicht benutzt und mich sonst keiner unerlaubten Hilfe bedient habe.

• ich dieses Diplomarbeitsthema bisher weder im Inland noch im Ausland einem Begutachter/einer

Begutachterin zur Beurteilung oder in irgendeiner Form als Prüfungsarbeit vorgelegt habe.

• diese Arbeit mit der vom Begutachter/von der Begutachterin beurteilten Arbeit übereinstimmt.

Der Studierende/Absolvent räumt der FH St. Pölten das Recht ein, die Diplomarbeit für Lehre- und

Forschungstätigkeiten zu verwenden und damit zu werben (z.B. bei der Projektevernissage, in Publika-

tionen, auf der Homepage), wobei der Absolvent als Urheber zu nennen ist. Jegliche kommerzielle

Verwertung/Nutzung bedarf einer weiteren Vereinbarung zwischen dem Studierenden/Absolventen und

der FH St. Pölten.

Ort, Datum Unterschrift

Julian Simon Rauchberger ii

Kurzfassung

Durch die Veröffentlichung der Meltdown und Spectre Schwachstellen Anfang 2018 haben Probleme,

die durch unsicheres Hardware Design verursacht wurden, zusätzliche Aufmerksamkeit von Medien und

Forschern erhalten. Auf Grund der Komplexität der Sicherheitslücken ist es noch immer schwerig um-

fangreiches Verständnis über diese Lücken zu erlangen. Diese Arbeit zielt darauf ab, sogenannte Spe-

culative Execution Side-Channel Angriffe im Detail zu erklären. Dies geschieht durch Analyse bekann-

ter Schwachstellen um Ursache, Auswirkungen und verfügbaren Risikominderungen festzustellen. Um

auch zukünftige Auswirkungen dieser Angriffe verstehen zu können wird eine umfassende Analyse der

eigentlichen Ursachen dieser Sicherheitslücken durchgeführt. Eine ausführliche Beschreibung der Hard-

warekomponenten, die an Out-of-order Execution beteiligt sind, wird durchgeführt um Kernprobleme

zu identifizieren und aufzulisten. Außerdem wird undokumentiertes CPU Verhalten analysiert und es

werden weitere Angriffsvektoren erforscht. Eine neuartige Technik um Hardware Breakpoints, die Lese-

zugriff auf Speicherbereiche überwachen, zu umgehen wird vorgestellt und angewendet um ein System

Management Mode Rootkit zu erkennen. Abschließend werden drei mögliche Hardwareänderungen zur

permanenten Verhinderung von Speculative Execution Side-Channel Angriffen erläutert und eine Kom-

bination aus zwei Techniken empfohlen um größtmöglichen Schutz bei geringen Performanceeinbußen

zu ermöglichen.

Julian Simon Rauchberger iii

Abstract

With the public release of the Meltdown and Spectre vulnerabilities in early 2018, issues stemming from

insecure hardware design have received additional attention by both media and researchers. Due to the

complex nature of the vulnerabilities discussed, it is still difficult to gain a comprehensive understanding

of these issues. This paper aims to shed light on so-called speculative execution side-channel attacks by

analyzing cause, impact and mitigations of known vulnerabilities. To fully understand future implica-

tions of these attacks, we conduct a comprehensive analysis on their root causes. We give an in-depth

explanation of hardware components involved in out-of-order execution and describe the core issues

we identified. Furthermore, we reverse engineer undocumented CPU behavior and explore other attack

vectors. We also demonstrate a novel technique of using speculative reads to bypass hardware break-

points that trigger on memory reads and apply it to detect a System Management Mode rootkit. Finally,

we describe three possible ways to alter hardware design to permanently eliminate speculative execution

side-channel attacks and recommend a combination of them to provide in-depth protection while keeping

performance impact as low as possible.

Julian Simon Rauchberger iv

Contents

1. Introduction 1

2. Background 3

2.1. Hardware bugs . 3

2.1.1. Erratum SKZ6 . 3

2.1.2. Erratum HSW136 . 4

2.1.3. The memory sinkhole . 4

2.1.4. Meltdown and Spectre . 4

2.1.5. Conclusion . 5

2.2. Out-of-order execution . 5

2.2.1. Out-of-order engine . 5

2.2.2. Speculative execution . 6

2.2.3. State restoring implementation . 7

2.3. Cache timing attacks . 7

2.3.1. Practical attacks . 8

2.3.2. ARMageddon . 8

3. Meltdown 10

3.1. Vulnerability . 10

3.2. Impact . 11

3.3. Meltdown patches . 12

4. Spectre 13

4.1. Variant 1: Bounds check bypass . 13

4.2. Variant 2: Branch target injection . 13

4.3. Spectre-NG . 14

4.4. Impact . 14

4.4.1. Updating security boundaries . 14

Julian Simon Rauchberger v

Contents

4.5. Patches . 15

4.5.1. Retpoline . 15

4.5.2. Microcode updates . 16

5. Determining root causes 17

5.1. Side-channel leakage from speculative execution . 17

5.2. Microarchitectural states shared between security contexts 17

5.3. Delayed or non-existentent security enforcement . 18

5.4. Assembly instructions . 18

5.4.1. PREFETCH . 18

5.4.2. CLFLUSH . 19

5.4.3. NON-TEMPORAL hints . 19

5.4.4. RDTSC . 19

6. Analyzing the speculative execution context 20

6.1. Testing instruction behavior . 20

6.1.1. Memory read . 21

6.1.2. Memory write . 21

6.1.3. Memory execution . 21

6.1.4. Additional findings . 22

7. Exploitability of writes in speculative execution 23

7.1. Attack scenario example . 23

7.2. L1 cache access . 24

7.3. Hyper-Threading . 25

7.4. Load and Store Buffers . 25

7.5. Analysis of hardware design . 26

7.6. Practical tests . 27

7.7. Conclusion . 27

8. Impact on other security boundaries 28

8.1. Software guard eXtension . 28

8.2. System Management Mode . 28

8.3. Conclusion . 29

Julian Simon Rauchberger vi

Contents

9. The return branch predictor 30

9.1. Function-based control flow on x86 . 30

9.2. Security relevance . 31

9.3. Experiments . 32

9.3.1. Experiment 1: Demonstrating the existence of the RSB 32

9.3.2. Experiment 2: Memory location dependencies 33

9.3.3. Result 1: RSB length . 33

9.3.4. Result 2: call-ret path mispredictions . 33

9.3.5. Analysis . 35

9.3.6. Experiment 3: Introducing training loops . 37

9.3.7. Conclusion . 37

10.Alternative side-channels 39

10.1. Defining side-channels . 39

10.2. Choosing the violation instruction . 40

10.2.1. Restricted transactional memory . 40

10.3. Creating test code . 41

10.4. Performing tests . 42

10.4.1. Cache hierarchy side-channel . 42

10.4.2. Timing-based side-channel . 42

10.5. Lazy FPU bug . 43

10.5.1. Root cause . 43

10.5.2. Proof of concept implementation . 45

10.5.3. Test results . 46

10.5.4. Countermeasures . 47

11.Bypassing hardware breakpoints with speculative execution 48

11.1. Software breakpoints . 48

11.2. Hardware breakpoints . 48

11.3. Implementing a proof of concept . 49

12.Long-term solutions to speculative execution side-channel attacks 52

12.1. Approaches to a solution . 52

12.1.1. Removal of offending features . 52

12.1.2. Preventing access to out-of-context information 53

Julian Simon Rauchberger vii

Contents

12.1.3. Removing the side-channel(s) . 53

12.2. Combined approach . 54

13.Conclusion 55

A. Source Code Listings 56

List of Figures 60

List of Tables 61

References 64

Julian Simon Rauchberger viii

1. Introduction

Speculative execution side-channel attacks are a new class of vulnerabilities which has been publicly

disclosed in early 2018. Most commonly known as Meltdown and Spectre, these attacks are based on

flaws found in many modern CPU architectures including x86 and ARM. As they target properties of the

hardware implementation itself, they are often extremely hard if not impossible to mitigate and possibly

affect billions of devices.

What makes these vulnerabilities an interesting topic of research is the fact that they expose an entirely

new attack vector which has previously often been ignored in threat models as it had been deemed too

unlikely to occur. With these attacks, fundamental assumptions about privilege separation at the hardware

level are no longer valid. With speculative execution side-channel attacks, it is possible to cross low level

boundaries such as address space isolation which have previously been considered a fundamental access

control feature that serves as the base for many advanced protection mechanisms.

With knowledge about these attacks readily available to any sufficiently motivated malicious actor, it

is necessary to update threat models and include mitigations to stop exploitation attempts. In order

to do so, in-depth understanding of the published vulnerabilities is required. Additionally, long-term

protections can only be established with a sufficient understanding of the root causes of speculative

execution side-channel attacks. They do not merely represent a handful of issues that can be fixed with

a set of patches but rather an ongoing field of research where new variants are discovered regularly.

Furthermore, mitigations for these vulnerabilities often introduce performance penalties that strongly

depend on the workload. As such, it is necessary to understand both the attack surface as well as the

impact of workarounds and patches in order to deploy appropriate mitigations without unnecessarily

degrading performance.

This paper aims to provide the reader with the in-depth understanding of speculative execution side-

channel attacks that is required in order to correctly evaluate threats posed by them. We give an ex-

planation of the parts of the CPU that are responsible for out-of-order execution and eventually gave

rise to the attacks described. Furthermore, we give in-depth information about the vulnerabilities, their

impact and currently available patches for both Meltdown and the Spectre class of attacks. Addition-

Julian Simon Rauchberger 1

1. Introduction

ally, we consider their impact on security-critical features such as Software guard eXtension and System

Management Mode.

We also provide an analysis of the root causes that gave rise to these security issues and detail possible

future attack surface. We analyze the behavior of speculatively running code with the aim of allowing

other researchers to build upon our results. We further apply this knowledge by researching various

aspects of speculative execution such as the behavior of the return branch predictor. Additionally, we

investigate the possibility of creating write-based speculative execution side-channel attacks and give an

in-depth explanation of the hardware components involved. We demonstrate a novel way of employing

out-of-order execution to read arbitrary memory without triggering hardware breakpoints and apply the

technique to detect a System Management Mode rootkit. Finally, we describe three possible ways to

permanently fix speculative execution side-channel attacks by modifying the hardware design of the

CPU.

The main contributions of our paper are:

• a detailed root cause analysis of speculative execution side-channel attacks, including software

impact and hardware design

• in-depth description of various actual vulnerabilities such as Meltdown, Spectre and the lazy FPU

bug

• analysis of possible future attack surface such as write-based attacks and poisoning of the return

predictor

• a novel root kit detection technique using speculative reading of memory

• possible design modifications to mitigate the described attacks

Julian Simon Rauchberger 2

2. Background

For a holistic assessment of speculative execution side-channel attacks, it is necessary to understand

the complex hardware details that gave rise to these vulnerabilities. Additionally, observing historic

hardware issues with security impacts allows for a better understanding of the threat generally posed by

such issues.

2.1. Hardware bugs

Although not exactly common, bugs stemming from erroneous hardware design have affected computer

systems for a long time. For instance, in 1994, the infamous Pentium FDIV bug caused affected proces-

sors to produce incorrect floating-point numbers when executing certain divisions. This ultimately led

to Intel recalling the flawed units, costing them millions1. While this bug did not cause any immediate

security issues, there have been others which could have led to such concerns.

2.1.1. Erratum SKZ6

In 2016, developers of the OCaml programming language encountered an obscure hyper-threading bug

affecting Skylake and Kaby Lake processors which they later documented in public blog posts after Intel

had released a microcode update to address the issue [1, 2]. The errata released by intel describes the

problem as following:

"Under complex micro-architectural conditions, short loops of less than 64 instructions that use AH, BH,

CH or DH registers as well as their corresponding wider register (e.g. RAX, EAX or AX for AH) may

cause unpredictable system behavior. This can only happen when both logical processors on the same

physical processor are active." [3]

While the exact impact of the bug is not immediately clear, it seems very likely that under the conditions

described, one logical hyper-threading core can corrupt or otherwise influence the registers of the other

sibling core. To the best of the authors knowledge, no public demonstrations of the exploitability of

this bug exist. It is very likely that that the bug is practically unexploitable because of how hard it is to

1http://www.trnicely.net/pentbug/pentbug.html

Julian Simon Rauchberger 3

2. Background

trigger in a meaningful way, however it clearly demonstrates how hardware bugs can break fundamental

privilege boundaries. The OCaml developer that first analysed the issue also notes that on at least one oc-

casion, page tables of the operating system were corrupted by the bug. This clearly proves that privilege

escalation is, at least theoretically, possible.

2.1.2. Erratum HSW136

From a security point of view, another notable hardware bug is Erratum HSW136 [4], which led Intel to

disable the newly introduced Transactional Synchronization eXtension (TSX) feature on certain affected

CPUs. While details on the issue are sparse, it can be assumed that the impact must have been relatively

severe if it led to Intel disabling an entire CPU feature. TSX can be used to implement transactional

memory operations at the hardware layer and can be a significant performance improvement for multi-

threaded code that relies heavily on locking. With TSX, multiple memory addresses can be modified

within a transaction without the changes being visible to other threads. Then, all modifications can

be committed with a single instruction or alternatively rolled back. Incorrect implementation of such

a feature could lead to unexpected race conditions or maybe even corruption of arbitrary memory if

permission checks aren’t working correctly.

2.1.3. The memory sinkhole

In 2015, Christopher Domas demonstrated an attack where the memory holding the Local Advanced

Programmable Interrupt Controller (LAPIC) registers is remapped into a memory region otherwise in-

accessible to even the operating system kernel known as System Management RAM (SMRAM) [5]. By

carefully shadowing a key data structure, a Global Descriptor Table (GDT) under the attackers control

will be loaded and ultimately result in execution resuming outside of SMRAM. This attack shows that

even a relatively weak primitive that allows only to set a small region of memory to zero allows a skillful

attacker to escalate privileges.

2.1.4. Meltdown and Spectre

Probably the most widely known example of hardware security issues with far-reaching consequences are

the Meltdown and Spectre bugs discovered independently by Google Project Zero, Cyberus Technology

and Graz University of Technology. Publicly disclosed in January 2018, these vulnerabilities brought

the importance of securely designed and correctly implemented hardware to the eye of the public. Both

were practical, exploitable bugs with very real consequences but no easy solution. Careful balancing

between effectiveness and performance impact had to be done when implementing patches. It was also

Julian Simon Rauchberger 4

2. Background

discovered that the same or similar problems could be found in many other architectures such as ARM or

x86 CPUs manufactured by AMD. In the following months, other researchers discovered and published

papers on variants of the initial vulnerabilities [6] [7].

The chapters 3 and 4 provides an in-depth analysis of the inner workings of these vulnerabilities and the

principles they are based on.

2.1.5. Conclusion

While this is by no means a comprehensive list of issues caused by hardware bugs, the examples clearly

demonstrate the massive threat that they can pose. All these security issues highlight how hard it is to

respond to threats that break the very foundations operating systems base their security on. Kernel as

well as userland software completely relies on the correct implementation of certain security features at

the hardware layer. If these assumptions do not hold, system confidentiality, integrity and availability

can no longer be guaranteed. Unlike software-based security issues, these bugs affect an even larger

number of systems and can be very hard or even impossible to patch. As described in the examples

above, responses ranged from simple microcode updates over selective disabling of features up to the

costly recalling of entire product lines. More research and responsible disclosure is needed to ensure

potential security issues are identified and fixed in a timely manner.

2.2. Out-of-order execution

To increase the utilization of all of its components, modern processors make use of out-of-order execu-

tion. This means that instructions are not necessarily executed in the same order as they appear in the

instruction stream. Since different components of the CPU are used for different computations such as

additions, multiplications or memory access, instructions can sometimes be executed in parallel. Many

processors also possess extensive circuitry to detect dependencies between operations and can therefore

reorder operations to increase utilization and throughput while still producing the correct output. A re-

order buffer is used to ensure that even though actual execution is out-of-order, the instructions retire in

the same order they were originally issued [8].

2.2.1. Out-of-order engine

The actual hardware responsible for out-of-order execution is called the Out-of-order engine as described

in the Intel 64 and IA-32 Architectures Optimization Reference Manual [9]. It splits the instruction

stream into dependency chains which are then sent to execution. If one dependency chain has to wait for

Julian Simon Rauchberger 5

2. Background

a resource such as an L2 cache entry, another dependency chain can be executed in the meantime. The

Out-of-order engine consists of three major parts working together: the renamer, the scheduler and the

retirement component.

The renamer connects the incoming in-order view of the instruction stream to the scheduler. It is respon-

sible for moving micro-ops from the micro-op queue to the Out-of-order engine. During this process, it

also renames architectural sources and destinations to micro-architectural sources and destinations, hence

the name of this unit. At very low levels, the CPU does not work with traditional register names pro-

grammers are used to but rather dynamically reassigns them to a larger set of internal micro-architectural

registers. Additionally, resources like load and store buffers are allocated to the micro-ops at this point.

The renamer is also able to detect and remove false dependencies. An example of this would be the

XOR RAX, RAX instruction. Even though it operates on the RAX register, the result will always be zero

and therefore not depend on the initial value of RAX. The renamer can detect and correctly remove such

Dependency Breaking Idioms to ensure they do not affect out-of-order execution negatively.

The scheduler is responsible for dispatching micro-ops to the execution core. It identifies which micro-

ops are ready and have all required input available and then selects which of those are dispatched every

cycle.

When an instruction has completely been executed and it is certain that no faults or exceptions that would

invalidate the result occurred, they are retired. This means that their results take actual effect and will be

visible to the outside world. This process is the responsibility of the retirement component which also

ensures that micro-ops retire in the same order they were issued.

2.2.2. Speculative execution

When out-of-order execution reaches a point where the CPU cannot be sure which way to continue,

speculative execution is employed. This happens for instance because of a branch that depends on a

memory location that is not in the cache. Since it is not yet known where in memory the next instruction

will be and waiting for the memory load would be too time consuming, the branch prediction unit is used

to take a guess. Execution is then continued there. In the best case, the prediction is later shown to be

correct and the executed instructions can be retired normally. If not, everything after the branch has to

be abandoned and the correct path has to be executed. This is usually done by creating a checkpoint at

the time of the branch and later reverting the CPU state to this checkpoint. For the sake of simplicity, we

will refer to this process as "snapshots" and "rollbacks" within this paper.

Julian Simon Rauchberger 6

2. Background

2.2.3. State restoring implementation

At the hardware level, restoring an older CPU state requires two separate mechanisms. The first is to

ensure that register modifications can be rolled back, and the old state of all registers can be restored. This

is implemented through register renaming. Internally, the processor has many more physical registers

than those which are logically exposed to the programmer. These so-called micro-architectural registers

can be dynamically assigned to the logical registers. To implement the concept of a register snapshot,

the CPU stores at a given point in time the association between logical and micro-architectural registers

and ensures that these do not get modified. The CPU then proceeds to work only with the other micro-

architectural registers which are not part of the snapshot during speculative execution. If the speculated

instructions retire, the snapshot metadata can be discarded. In case of a rollback, all modifications are

discarded instead, and the registers are restored from the saved state. The second mechanism required

to implement snapshots deals with memory writes as these also have to be able to be undone. This is

implemented through the use of buffers which store the modifications before they are committed to main

memory. In case of a rollback, the contents of the buffers can simply be discarded.

Branch mispredictions generally have a rather large performance penalty as not only the results of already

executed calculations have to be thrown away but also the correct ones have to be executed from scratch.

Because of this, there is a large incentive to ensure branches are correctly predicted, resulting in complex

algorithms being used by the branch prediction units.

To avoid repetitions of the same topic, when we refer to speculative execution within this paper, we

generally mean instructions that are being executed but have not been retired yet and might still be

abandoned, including normal out-of-order execution that does not directly depend on branch prediction.

2.3. Cache timing attacks

At the core of both Meltdown and Spectre are timing-based side-channels that can leak information

from the speculative execution context. While these attacks are by far the most prominent and have an

arguably very high impact, the idea of using microarchitectural timing differences to breach security

boundaries is not new. Historically speaking, these side-channels have mostly been used to defeat Kernel

Address Space Layout Randomization (KASLR). With KASLR, the operating system kernel gets loaded

at a new, randomized address during each boot. By using a variety of different techniques to access

random memory addresses in kernel space and measuring the access times, researchers found various

ways to differentiate between mapped and unmapped areas. In some cases, it is even possible to get

additional information about a given memory area.

Julian Simon Rauchberger 7

2. Background

2.3.1. Practical attacks

In 2013, Hund et al. demonstrated multiple timing-based side-channel attacks that disclose information

about the kernel memory [10]. The usage of memory access time differences based on the cache level the

data can be found in is very similar to the techniques used in the Meltdown and Spectre attacks. Similar

techniques have also been previously described by researchers from Graz University of Technology [11].

The DrK attack, developed by Yeongjin Jang et al., makes use of the Intel TSX feature to suppress

exceptions normally raised by access violations when code with userland privileges tries to access kernel

memory [12]. They found that measuring timing of the execution of the TSX abort handler is much more

accurate than doing the same with an exception handler. The attack can not only differentiate between

mapped and unmapped areas but also between executable and non-executable.

The x86 architecture is especially susceptible to these attacks because it provides all the necessary tools

to unprivileged code by default. Instructions of the CLFLUSH family can be used to reliably remove a

given memory address from cache. Additionally, multiple PREFETCH instructions exist that can be used

to load a memory address into any given cache level at will. With RDTSC, attackers have access to a

high-resolution timer that greatly simplifies many attacks. Even though unprivileged access to this in-

struction can be disabled, there is no major operating system that does so to the best of the authors knowl-

edge. Multiple strategies for cache attacks have been identified in the past, including Evict+Time [13],

Prime+Probe [13] and Flush+Reload [14].

2.3.2. ARMageddon

Even though specialized assembly instructions make certain attacks easier, it is also possible to exploit

timing-based side channels without them, as demonstrated by the ARMageddon attacks [15]. They are

based on selectively flushing certain shared memory code from cache to determine which code has been

executed by other applications. This is used to spy on smartphone users by flushing code that handles

different user interactions such as gestures and key presses. Depending on which parts of the code get

cached again, attackers can get some understanding of how the victim interacts with the smartphone.

Contrary to most of the previous attacks which were focused on Intel CPUs, ARMageddon works on

the ARM architecture. The authors did a comprehensive study on the cache eviction policy used by

widespread ARM CPUs and were able to reverse engineer the algorithm. This allowed them to remove

a given address from cache by accessing and thereby caching other addresses in a way that causes col-

lisions in the cache. With knowledge of the caching algorithm it is possible to execute caching-based

attacks even though there is no dedicated flush instruction on most ARM CPUs. Unlike x86, the ARM

architecture also does not contain a high-resolution timer with unprivileged access that could be used

Julian Simon Rauchberger 8

2. Background

to determine access times. The authors provide multiple alternative ways such as performance events

or a dedicated thread timer to solve this problem. ARMageddon clearly demonstrates that cache-based

side-channels can also be exploited on Architectures that do not provide a dedicated flush instruction and

a high-resolution timer.

Julian Simon Rauchberger 9

3. Meltdown

The Meltdown [16] vulnerability affects most modern Intel CPUs and also some ARM processors. Ac-

cording to AMD, Meltdown does not apply to their products due to differences in processor design1. It

allows unprivileged users to disclose kernel memory from Ring 3 by using a side-channel during specu-

lative execution and thereby breaks all security assumptions given by address space isolation. On some

architectures, Meltdown can also be used to read privileged registers, but this paper focuses on the Intel

x86 architecture where this is not true.

3.1. Vulnerability

Meltdown is a form of race condition between fetching an address and completing the permission check.

When accessing a memory address the code lacks permission to read, out-of-order execution allows

multiple instructions to be executed before the violation is detected. At that time, all modifications based

on the value read will be invalidated and the state of the CPU will be rolled back. If implemented

correctly, this would be enough for Meltdown to be unexploitable as the result of the fetch would not

be available to the attacker. The vulnerability lies in the fact that changes in some microarchitectural

states will not be correctly rolled back and can therefore be used as a side-channel to leak information.

In the original paper, this side-channel has been the cache hierarchy. By selectively accessing memory

and therefore fetching it into cache during out-of-order execution, the researchers were able to leak data

one bit at a time. To give a simple example, an attacker could access address A if the secret value is 1 or

address B if it is 0. By measuring access times to these locations after the rollback, an attacker would be

able to establish a side-channel. This attack scenario is detailed in Figure 3.1. It is currently not clear if

and how many other microarchitectural side-channels exist.

1https://www.amd.com/en/corporate/security-updates

Julian Simon Rauchberger 10

3. Meltdown

address Asp
ec

ul
at

iv
e

co
de

 secret valueread secret

is secret
 1?yes no

access A access B

address B

measure access
times of A and B

flush A and B from
cache

memory access

execution flow

Figure 3.1.: Meltdown attack

3.2. Impact

Meltdown breaks privilege-based separation of kernel and userland memory, more specifically the pro-

tection provided by the page tables. The page tables are a hierarchical memory structure set up by the

kernel that defines the mapping between physical and virtual addresses. The configuration defined in the

page tables is then enforced by the Memory Management Unit (MMU). Each entry contains a User/Su-

pervisor (U) bit which is a flag that controls if the page can be accessed from the userland or requires

Ring 0 privileges. This normally prevents unprivileged code from reading data from kernel memory but

the Meltdown vulnerability breaks this assumption. Research conducted by Google Project Zero [17]

indicates that not all kernel memory can be read with Meltdown but rather requires a precondition. They

assume this to be presence of the targeted kernel memory in the L1 data cache but do not hold complete

confidence in this statement. It seems however reasonable that Meltdown requires the targeted data to

be in the cache hierarchy as fetches from main memory typically require around 200 CPU cycles and

are therefore too slow to be completed during the short time window between creation of the violation

and enforcement that Meltdown is based on. Additional research indicates that Meltdown cannot be

used to cross other privilege boundaries such as Intel Software Guard eXtension (SGX) [6] and System

Management Mode (SMM)2. This indicates that the Meltdown vulnerability only affects the protections

normally provided by page table isolation and is not a more general bypass that can be used to read any

protected memory locations.

2https://blog.eclypsium.com/2018/05/17/system-management-mode-speculative-execution-attacks/

Julian Simon Rauchberger 11

3. Meltdown

3.3. Meltdown patches

The Linux kernel fixes the Meltdown vulnerability with the kernel page-table isolation (KPTI) workaround

which is based on the older set of KAISER (Kernel Address Isolation to have Side-channels Efficiently

Removed) patches originally presented in a paper by Gruss, Lipp, Schwarz, Fellner, Maurice and Man-

gard [18].

The idea behind KPTI is to work around the incomplete protections provided by page tables in light of

Meltdown by unmapping as much as possible of the kernel code and data regions while userland code

is running. Instead of only using one set of page tables, KPTI introduces a second set. When kernel

code is running, the original set that includes both kernel and userland regions is used. When execution

passes to unprivileged Ring 3 code, a second set that maps only userland memory and a minimal amount

of kernel code to handle syscalls, interrupts and exceptions is being used. Since Meltdown can only be

used to read cached and mapped kernel memory, this completely protects against the vulnerability at the

cost of performance. The exact impact is hard to measure as it depends heavily on the workload and

also on the CPU generation. One of the biggest reasons KPTI impacts performance is the requirement

of a translation lookaside buffer (TLB) flush during each context switch. As the kernel memory gets

temporarily unmapped, the cached mapping entries have to be removed from the TLB as well. This also

means they will not be available the next time kernel code runs, strongly limiting the positive effect TLB

normally has on address translation performance. This can be avoided by making use of the processor-

context identifiers (PCID) hardware feature which Linux fully supports since Kernel version 4.14. PCID

allows to tag TLB entries with a context identifier that can be used to dynamically control access to

the entries. It limits TLB lookups to the currently allowed context. By using different PCIDs during

kernel and userland execution, the kernel TLB entries can be made invisible to lower privilege levels

without having to flush them. On older processors not supporting PCID, the performance impact of

KPTI is therefore much bigger. To the best of the authors knowledge, the page table isolation software

workaround is at the time of writing the only possible protection against Meltdown on affected Intel

processors. No microcode updates that address Meltdown specifically have been released but Intel has

stated that an upcoming hardware redesign will feature protections against Meltdown.

Both the Windows and MacOS operating systems have implemented Meltdown fixes in a similar fashion

to Linux. Microsoft states that performance impact is negligible on Windows 10 PCs with Skylake,

Kabylake or newer processors. Haswell or older shows a more significant slowdown, especially when

paired with an older version of Windows3.

3https://cloudblogs.microsoft.com/microsoftsecure/2018/01/09/understanding-the-performance-impact-of-spectre-and-

meltdown-mitigations-on-windows-systems/

Julian Simon Rauchberger 12

4. Spectre

While Meltdown can be very clearly defined and worked around, Spectre [8] describes a full class of

vulnerabilities with many variants, some of which have been discovered after the original paper had

been published. Spectre attacks are based on maliciously inducing branch mispredictions in a way that

benefits the attacker by crossing security boundaries. Depending on the variant, this can be done either

directly or by mistraining a branch predictor.

4.1. Variant 1: Bounds check bypass

Variant 1 is also known as bounds check bypass (BCB) and summarizes attacks where a check is bypassed

during speculative execution because the CPU wrongly assumes the check will succeed. This can for

instance happen if the user is able to specify an index for an array and the code first checks if the index

is within the bounds of the array. By doing multiple runs with an in-bounds index, the branch predictor

can be trained to assume that the check will succeed, and the array access will subsequently be executed.

Afterwards, an out-of-bounds index is supplied, the branch prediction will assume that the bounds check

will succeed again and speculatively run the array access code with an invalid index, ultimately accessing

data outside the array. The attacker must then find a way to leak the accessed data through a cache side-

channel. This attack is most relevant in the scenario of untrusted code running inside a sandbox, e.g.

JavaScript in a web browser. Under these circumstances, Spectre variant 1 has been demonstrated to be

able to read arbitrary browser memory which might contain secrets such as cookies or passwords.

4.2. Variant 2: Branch target injection

Variant 2, branch target injection (BTI), is described as an attack scenario where the internal state of the

branch predictor is manipulated to ensure that branch prediction will predict an address favorable to the

attacker. If successful, this attack can essentially be used to speculatively execute arbitrary code in the

context of the poisoned branch instruction. This vulnerability can most easily be exploited with indirect

branches and has been demonstrated to be able to leak data from one process to attack code running in

Julian Simon Rauchberger 13

4. Spectre

another.

4.3. Spectre-NG

Eight new Spectre variants, dubbed Spectre-NG1, have been announced in May 2018, however at the

time of writing only two of them have been publicly released. Variant 3a, known as rogue system register

read affects systems that allow speculative reads of system registers and can allow attackers to read their

contents by employing the same side-channels used in other Spectre attacks. Variant 4, speculative store

bypass, is based on processors speculatively reading memory before the addresses of all prior writes are

known which may lead to the reading of an earlier value.

4.4. Impact

Spectre highlights a critical issue: the sharing of architectural states between code running in different

security contexts, for instance branch prediction tables shared between processes running as two dif-

ferent users. A malicious user could deliberately craft jumps to poison the branch prediction table in

a way that incorrectly predicted branches in the process of another user. Similar to the side-channels

employed in Meltdown, these mispredictions could then cause the leakage of information. A commonly

demonstrated way to exploit this is by bypassing array bounds checks. If no mitigations are present and

exploitable gadgets exist, Spectre can theoretically be used to read all memory present on the system.

Like Meltdown, this requires an attacker to be able to execute arbitrary code on the system.

Spectre is known to affect most advanced CPUs that have some sort of dynamic branch prediction. This

includes Intel and AMD, some high-performance ARM CPUs and possibly others. At the time of writing,

the full range of affected devices is still being discovered.

4.4.1. Updating security boundaries

Spectre/Meltdown has led to an update of the threat model used by the Chromium developers. They

now consider all active web content such as JavaScript, Flash or WebAssembly as being able to abuse

side-channels to read all data hosted in the same address space2.

In the light of Spectre, it is necessary to reconsider many traditionally uncrossable security boundaries.

Theoretically, Spectre can be used to read any memory on the system if vulnerable code runs at any

1https://www.heise.de/ct/artikel/Exclusive-Spectre-NG-Multiple-new-Intel-CPU-flaws-revealed-several-serious-

4040648.html
2https://chromium.googlesource.com/chromium/src/+/master/docs/security/side-channel-threat-model.md

Julian Simon Rauchberger 14

4. Spectre

time and has access to the targeted data. As the side-channels exploited by Spectre have historically not

been considered when implementing code, it should be assumed that all code written previously to the

discovery of Spectre is vulnerable. Without hardware-based fixed provided by CPU vendors, it is only

possible to limit the impact of Spectre as much as possible by making exploitation harder to the point

where it becomes infeasible. As long as the underlying architecture-state sharing has not been fixed, an

attacker with enough resources should be assumed to be able to write a functioning exploit for Spectre.

In contrast to Meltdown, which can only be used to bypass page table-based isolation between userland

and kernel, Spectre has a much wider range of impact on privilege boundaries. It can be used to read

memory from protected region in the same process (e.g. memory normally not accessible by a JavaScript

engine), other processes, the kernel and other protection mechanisms such as SGX. However, many of

these attacks are extremely hard to execute and while proof of concept implementations exist, there is

no known account of in-the-wild exploitation where actual meaningful data has been compromised. To

give an example, Spectre theoretically allows JavaScript hosted on a website to manipulate the branch

predictor in a way that attackers can read a text document opened in another program. Practically speak-

ing, this attack is currently infeasible as there are too many unknown variables such as CPU generation,

microcode version, address space layout randomization and the scheduler that would need to be ac-

counted for. Implementing a reliable attack that works on multiple systems seems almost impossible, but

it could theoretically be done with enough resources which is why Spectre should still be considered as

a vulnerability that needs to be addressed.

4.5. Patches

Finding workarounds for Spectre vulnerabilities is not as straightforward as with Meltdown. As it is

extremely hard if not impossible to determine the full scope of all Spectre vulnerabilities and new variants

are still being discovered, it cannot be said that Spectre has been fully mitigated at the time of writing.

While certain protections exist, and exploitation has become harder, it is very likely that this will stay a

topic of research for the foreseeable future.

4.5.1. Retpoline

Compilers have been updated to include the Retpoline feature which protects indirect jumps by replacing

them with return statements and adding an endless loop that will never be executed during runtime but

which the CPU will predict as the correct branch target, thereby trapping speculative execution. While

Julian Simon Rauchberger 15

4. Spectre

being a valid mitigation in some cases, Retpoline cannot provide protections under all circumstances3. It

should be noted that on Skylake and newer processors, the return branch predictor has a fallback mech-

anism that will use the branch target buffer to predict branches when the return stack buffer underflows.

This means that on these systems, retpoline cannot be seen as a reliable protection mechanism and needs

to be supplemented by hardware-based protection4.

4.5.2. Microcode updates

Intel has issued Microcode updates for modern CPUs which further mitigate known issues. Several

additional CPU features were introduced that can help kernel developers protect against Spectre-style

attacks.

The newly introduced indirect branch restricted speculation (IBRS) is meant to provide protection

against certain attacks based on variant 2, the branch target injection. When IBRS is active, predicted

target addresses cannot be influenced by code that executed in a less privileged prediction mode before

that IBRS mode was last set to one5. This means IBRS can be used to protect branch prediction in the

kernel from code running in userland.

The second new feature, single thread indirect branch predictors (STIBP) stops sibling hyperthread-

ing cores from influencing indirect branch prediction on each other. This is especially important since

hyperthreads share more hardware resources than physicall cores on a processor do. Providing logi-

cal separation between them is something that can only be done at the processor level and not by the

operating system [19].

Another new feature, the indirect branch prediction barrier (IBPB) can be used to flush the branch

prediction state at any time and completely reset it. Operating systems can use this feature to ensure

code running previously has no impact on code running afterwards. The kernel can for instance use this

to reset the branch prediction table and associated data structures when it switches execution from one

process to another. This however comes with a non-negligible performance impact and should therefore

only be used where absolutely necessary6.

All of the new features described here have been delivered to supported CPUs through microcode up-

dates. This of course means that it is crucial for security to deploy these updates in a timely fashion

because even if operating systems support the techniques, they cannot make use of them if the underly-

ing microcode does not yet include them.

3https://lkml.org/lkml/2018/1/4/724
4https://lkml.org/lkml/2018/1/4/724
5https://lwn.net/Articles/743019/
6https://patchwork.kernel.org/patch/10145335/

Julian Simon Rauchberger 16

5. Determining root causes

In order to determine where further attack vectors in the Intel architecture might be located, it is first nec-

essary to determine the key issues that lead to the exploitability of Meltdown and Spectre. We identified

three core findings than can be used as a starting point for further research:

1. Side-channel leakage from speculative execution

2. Microarchitectural states shared between security contexts

3. Delayed or non-existentent security enforcement

The following sections explain these findings in more detail.

5.1. Side-channel leakage from speculative execution

None of the vulnerabilities exploited in Meltdown and Spectre attacks would have any real-world impact

if it were not possible to leak information obtained during speculative execution to code running outside

of this context. The core issue here is that the complete architectural state at the beginning of speculative

execution is not restored during a roll back to a previous checkpoint. This is specifically exploited by

abusing the fact that cache loads occurring during speculative execution are not evicted upon a roll-back.

This can be used to leak the obtained information. For instance, by either accessing address A if a 1 is

encountered or address B if 0 is encountered. It can then later be determined which address had been

accessed by measuring load times to determine if it can be found in the CPU cache. It is very likely that

cache loads are not the only microarchitectural state that is not reset during a roll back. Further research

is required to determine if information can also be leaked in other ways.

5.2. Microarchitectural states shared between security contexts

The second issue is that internal information recorded on certain events such as branches can influence

code running in other security contexts. For instance, it is possible that branches taken in process A

influence the prediction behavior in process B. This allows a malicious user to manipulate prediction

Julian Simon Rauchberger 17

5. Determining root causes

behavior in other contexts. By combining this with a leaking side-channel, it is possible to obtain infor-

mation otherwise protected from access. The problem here is that internal CPU states are shared between

different contexts, can be modified by any of them and in turn influence behavior in other contexts. It

remains to be determined how many of these internal states exist and which can be manipulated in ways

that have impact on the security of the system. It would be especially interesting to see if there are shared

states that are not related to the branch prediction tables exploited in Spectre attacks.

5.3. Delayed or non-existentent security enforcement

The Meltdown attack is based on the fact that it is possible to access otherwise restricted memory re-

gions during speculative execution and also execute additional instructions before the access violation

is enforced. In combination with a leaking side-channel, this allows to acquire information otherwise

unobtainable and persist some of it in way that is not reset by a roll back. The core problem here seems

to be that it is possible to execute additional instructions between the occurrence of the access violation

and retirement of the instruction block. In other words, enforcement of access control is delayed instead

of immediate during speculative execution. Further vulnerabilities beside reading of unauthorized mem-

ory areas might exist. Meltdown demonstrates that code executed during speculative execution does not

behave as it would be expected if the system were only doing simple in-order execution. Further analysis

is required to determine if there are any additional enforcement differences that could be used by bypass

security boundaries.

5.4. Assembly instructions

Additionally, it should be noted that a range of assembly instructions exists on the x86 platform that can

simplify exploitation of Spectre and Meltdown type vulnerabilities. Even if they are not strictly required

in most cases, we consider them part of the attack surface as they make both discovery and exploitation

significantly easier and might make attacks on otherwise unexploitable vulnerabilities more realistic. The

following section gives an overview of these instructions and explains which benefits they provide for

attack scenarios.

5.4.1. PREFETCH

This family of instructions allows an unprivileged user to fetch memory into the CPU cache. Multiple

variants exist that affect different layers of the cache hierarchy. While of course not strictly necessary to

Julian Simon Rauchberger 18

5. Determining root causes

execute attacks on speculative execution, this gives an attacker detailed control about the cache and can

thus be beneficial.

5.4.2. CLFLUSH

CLFLUSH removes memory at the given address from all levels of the cache hierarchy. Researchers have

demonstrated that the same effect can also be achieved by selectively accessing certain memory locations

in order to get an address of their choosing evicted from cache [15]. This however requires extensive

understanding of the eviction strategy used by the CPU which is time consuming to reverse engineer and

might differ between models or generations. CLFLUSH provides a simple and portable means, greatly

simplifying attacks that require certain memory locations to be uncached.

5.4.3. NON-TEMPORAL hints

The Intel architecture contains several variants of MOV instructions which contain a "non-temporal hint",

for instance MOVNTI. When these instructions are used to read or write memory, the CPU will not fetch

the corresponding line into the cache hierarchy. This can be helpful for attackers when they want to

ensure that auxiliary code does not pollute the cache.

5.4.4. RDTSC

This instruction can by default be executed from userland code (Ring 3) and allows access to a high-

resolution timer. The EDX and EAX registers are filled with a timestamp counter with a combined resolu-

tion of 64 bit. This counter is incremented by the processor at every clock cycle and thereby provides an

extremely accurate measurement of timing differences, making it very valuable for determining memory

access delays. While RDTSC makes attacks easier to implement, it should be noted that there are also

other ways of getting high resolution timers for the same purpose, for instance a thread that increments a

single integer as fast as possible. While this method does not have the same reliability, it seems to work

well enough for actual attacks in practice [20].

Julian Simon Rauchberger 19

6. Analyzing the speculative execution

context

The Meltdown vulnerability shows that the out-of-order context that speculatively executed code runs in,

differs significantly from the regular, well-documented in-order view programmers are normally working

with. After out-of-order execution has completed, the reorder buffer ensures that the instructions retire

in the correct order so that the actual result is not influenced. It is however also possible for faults and

violations to occur during out-of-order execution, and in these cases, some behavior has been shown to

differ. The reorder buffer ensures that these divergences from expected behavior do not influence the

in-order result of a computation by throwing away the results of instructions executed after an exception

occurred in regard to the in-order sequence. However, these instructions have still been executed at some

point, even if their results are not made visible.

The authors of Meltdown discovered that one of the differences between out-of-order execution and in-

order execution is that it is possible to read kernel memory and continue executing instructions for a few

cycles before the violation is detected. It seems likely that there are additional differences in the behavior

of code during speculative or out-of-order execution. For the purpose of this research, we will refer to

this as the speculative context and attempt to discern differences in behavior of assembly instructions

when running in this context.

6.1. Testing instruction behavior

In order to test the behavior of instructions in the speculative context, we must first write code that

creates a branch misprediction in order to execute code speculatively. We can then leak the results

of our tests through selective cache loads and discern differences from expected behavior. As branch

predictor behavior differs between processor generation, we focus on the Haswell test system used for

this research. To intentionally induce a branch misprediction, we create a program that contains a loop

which will run n times. During each iteration, an if condition in the loop either executes code or jumps

over it. The condition is set up to ensure that the code will execute during the first n − 1 iterations and

Julian Simon Rauchberger 20

6. Analyzing the speculative execution context

be skipped during the last. Additionally, the condition depends on memory that will be flushed from

cache during each iteration. This setup ensures that the code inside the if will be speculatively executed

during the last iteration and subsequently be rolled back because the CPU will eventually detect the

misprediction. We can then leak data from this speculative execution context by selectively accessing

one of two addresses during the last iteration. The first signifies a binary one, the second a binary

zero. After speculative execution is complete, we can use the RDTSC instruction to approximate how

many cycles access of each memory location takes. If an address had been accesses during speculative

execution, it should already be in the cache hierarchy, making later accesses significantly faster.

The results of the tests run using this setup on a Haswell CPU are described in the following sections.

6.1.1. Memory read

It was possible to directly and accurately read kernel memory from userland as described in the Meltdown

paper. We found that only memory which already resides in the cache hierarchy can be read. This is

most likely because access to uncached memory locations takes so many cycles that the CPU will detect

the branch misprediction and abort speculative execution before the load can complete. Additionally, it

seems to also be possible to read from completely unmapped memory locations. During our tests, these

reads always resulted in the value zero, but code continued to execute speculatively after the access. We

assume that page faults have a delayed effect, similar to segmentation faults. Of course, it is also possible

to read every address of the normal process memory.

6.1.2. Memory write

Similar to the read tests, we performed a range of write operations to protected memory to determine

possible differences. It is possible to write to kernel memory locations and continue code execution,

but when attempting to read back the modified memory, we found that only the original value would be

returned. It is possible to write to userland read-only memory. In this case, the changes are also reflected

when attempting to read back the data. When writing unmapped memory, the modified location will

always return the value 0xFFFFFFFFFFFFFFFF when attempting to read it.

6.1.3. Memory execution

It is possible to jump to other memory locations and continue execution there as long as the instructions

are valid and the memory is mapped with the executable permission. It is not possible to speculatively

execute memory that lacks the executable flag, even if it is in userland. Furthermore, we conducted addi-

tional tests regarding access of userland data from speculatively executed kernel code. Supervisor mode

Julian Simon Rauchberger 21

6. Analyzing the speculative execution context

execution prevention (SMEP) is a hardware feature found in in modern Intel processors that prevents the

execution of userland code from Ring 0 and has been introduced to make privilege escalation exploits

harder. We conducted tests to determine if SMEP also stops speculative execution. We implemented the

same test software described above as a Linux kernel module and tested it on an install of Ubuntu 16.04.

We found that it is not possible to speculatively execute userland code from ring 0 if SMEP is active. It

seems that this protection mechanism takes precedence over speculative execution. Unfortunately, our

tested processor did not support supervisor mode access prevention (SMAP) and speculative userland

read/write protection from Ring 0 could not be tested.

6.1.4. Additional findings

We found that many instructions – mostly those that require a higher privilege level to execute – im-

mediately stop speculative execution. Contrary to read or write permission violations which didn’t stop

execution under any circumstance in our tests, any instruction placed afterwards will not run. This in-

cludes for instance any and all accesses to control registers (e.g. MOV RAX, CR0), machine specific

registers (RDMSR, WRMSR), the global descriptor table (LGDT, SGDT) and SYSCALL.

Julian Simon Rauchberger 22

7. Exploitability of writes in speculative

execution

Considering the flaws Meltdown and Spectre are based on, we considered the possibility to exploit not

only memory reads but also writes during speculative execution. One of the core issues in Meltdown

is that the permission check does not have immediate effect when reading kernel memory from cache

during speculative execution. Before the access violation aborts and rolls back speculative execution,

additional instructions that leak the contents of the read can be executed. This allows an attacker to leak

arbitrary data from CPU cache.

Based on this, it seems reasonable that attacks based on cache writes could also exist. It should be

possible to write arbitrary data to memory locations and execute additional instructions before the access

violation aborts speculative execution. To exploit this in a real-world scenario, one would need to find a

way to influence code outside of speculative execution with these modifications. It might be possible to

manipulate cache lines inside speculative execution on one core in a way that, also speculatively executed

code, running on another core at the same time will be influenced. Most likely this would be detected by

the CPU, and the corresponding changes rolled back, but the same techniques used in Meltdown leaks

could be applied to read arbitrary memory in other contexts.

7.1. Attack scenario example

To give an unlikely but easy to understand example, it could be possible to modify shared code backed

by the same physical memory during speculative execution running on core A. If core B runs speculative

execution within a victim process that uses the same shared code, at the same time, those changes might

be visible. As soon as the access violation from core A is processed by the CPU, all changes would be

rolled back so if this happened accidentally, no corruption would occur. If an attacker were to specifically

craft the code, they could read arbitrary memory in the victim process and leak it through cache-loads

like in Meltdown. The described scenario is depicted in Figure 7.1This exact scenario is not very likely

to work, but it should be a simple example of the type of attack being proposed here: since it is possible

Julian Simon Rauchberger 23

7. Exploitability of writes in speculative execution

to modify arbitrary memory during speculative execution and continue executing additional instructions

before the modifications are rolled back, it might be possible to influence code running on other cores

at the same time. This is especially true for hyper-threading enabled CPUs as logical cores share many

resources that physical cores do not.

physical memory

0x00000000

0xFFFFFFFF

shared library

victim process
address space

shared library

shared library

attacker process
address space

malicious
code

speculative
writes

victim code

speculatively
executes
modifications

Figure 7.1.: Speculative write attack scenario

In order to evaluate the probability of this scenario, it is necessary to gain a deeper understanding of

CPU caches on the Intel platform. The following sections give the necessary background information to

evaluate the probability of the proposed attack.

7.2. L1 cache access

On recent Intel CPUs, the L1 cache is virtually-indexed and physically-tagged1, this means that the

offset bits of the virtual address are used to calculate L1 array locations. Since the offset bits are the

same in virtual and in physical addresses, this can happen before the virtual address is translated to a

physical address by the Translation Lookaside Buffer (TLB) or actual walking of the page tables (PT).

After that, cache tags are compared to the actual, fully translated physical address to determine the correct

entry [21]. As a consequence, this means that L1 cache relies on the actual, physical address of a memory

location. If an attacker finds a way to poison this cache, other threads should see the modification when

they access memory backed by the same physical address. This scenario happens quite often in modern

1https://www.realworldtech.com/sandy-bridge/7/

Julian Simon Rauchberger 24

7. Exploitability of writes in speculative execution

operating systems. Shared libraries are commonly loaded into memory once and then mapped into the

virtual address space of multiple processes. Since L1 cache is virtually-indexed and physically-tagged,

poisoning the cache entries of such shared pages should also affect other processes since they are backed

by the same physical addresses.

7.3. Hyper-Threading

On modern Intel CPUs, each physical core has its own L1 and L2 cache that is not shared with any of

the other cores. Only L3 cache is shared between the cores of a single chip. This makes it more unlikely

that the proposed vulnerability could occur in code running on different physical cores. As each of them

has a unique L1 and L2 cache, the likelihood that changes made to memory during speculative execution

could be visible on any of the other cores [9].

However, if CPUs support Hyper-Threading (HT), those caches are shared between two logical cores.

Hyper-Threading is a technology developed by Intel to execute multiple logical threads on the same

physical CPU. From the point of view of the operating system, the logical threads look like physical

CPU cores. In the actual hardware however, two threads run on the same physical core which has some

resources duplicated in order to allow for this behavior. For instance, each logical core has its own

replicated set of registers. Other resources, such as certain buffers – which will be described in more

detail later – are statically allocated between the two logical cores. There are also competitively-shared

resources, including the cache hierarchy [9]. This means that during HT operation, both logical cores

will share the same physical L1 and L2 caches. Taking this into account, it seems more likely that it

might be possible to attack the sibling Hyper-Threading core with modifications made to caches during

speculative execution.

7.4. Load and Store Buffers

While often ignored in literature for the sake of simplicity, reads and writes are actually not immediately

serviced by the L1 cache even if they are contained therein. To further improve performance, Intel

introduced load and store buffers. Writes are first queued into buffers and are not immediately committed

to L1 cache. This allows to further improve performance by not having to wait for the cache write to

complete but introduces a new problem. If the same memory location gets read again, the change might

not be visible in the L1 cache yet. Consider the code in Listing 7.1.

Listing 7.1: reading modified data

mov [x], rax

Julian Simon Rauchberger 25

7. Exploitability of writes in speculative execution

mov rbx, [x]

The expected result would be that both RAX and RBX contain the same value once this code has been

executed. However, if the modification made in the first instruction is only added to a buffer and not

actually committed to L1 cache, the second instructions would read the old value and produce incorrect

results. A simple workaround for this would be to stall the CPU until the buffer has been fully committed

to the cache, however this would severely decrease performance in these situations. The solution imple-

mented by Intel is called store forwarding. Reads will always first be satisfied from store buffers and

only afterwards from the cache hierarchy. This complicates chip design but greatly simplifies software

written for the CPU as the buffers become completely transparent to the programmer and do not have to

be taken into account.

According to documentation provided by Intel [9], load and store buffers are statically allocated between

two logical cores when Hyper-Threading is active and are not shared. In the context of our proposed

attack vector, this means that writes only committed to buffers cannot be visible on other logical cores

by hardware design.

7.5. Analysis of hardware design

To sum up the last chapters, there are two important pieces of information relevant to the practicality

of the proposed attack. First, L1 cache entries are assigned at the level of physical addresses and are

shared between logical cores when hyperthreading is active. From that point of view, changes made to

L1 cache during speculative execution could very well be visible to other logical cores, if they are also

undergoing speculative execution. The second important part is that writes are not directly applied to L1

cache but rather committed to a store buffer. To execute the proposed attack, it would be necessary to

find a way to commit store buffer modifications to L1 cache during speculative execution but this seems

to be prohibited by design.

A blog post from 2013 suggests that memory snapshotting is performed by using load and store buffers2.

Modifications made during speculative execution are only ever written to store buffers which are then

discarded if a roll back occurs. As described previously, this design would make our proposed attack

impossible as these buffers are never shared between logical or physical cores.

2https://fgiesen.wordpress.com/2013/03/04/speculatively-speaking/

Julian Simon Rauchberger 26

7. Exploitability of writes in speculative execution

7.6. Practical tests

We performed various tests to ensure that no detail has been overlooked where we attempted to see if

modifications to an address made during speculative execution were visible on another core also un-

dergoing speculative execution at any time. Our test setup included a thread that continuously changed

the value of stored at an address during speculative execution without ever retiring the modification.

A second thread simultaneously attempted to detect the magic value written by the first thread during

speculative execution and leak the result through a cache side-channel. As expected by our analysis of

the hardware design, we were unable to detect any modifications on the second core with statistically

significant frequency.

7.7. Conclusion

As demonstrated by both our analysis of the hardware specification as well as manually performed test-

ing, we are reasonably certain that the proposed attack does not work with the hardware version we tested.

It might be possible with other revisions, microcode or additional knowledge about undocumented parts

of the Intel CPU but our setup does not seem vulnerable to the proposed attack. It is likely that Intel

hardware is not vulnerable because of the way load and store buffers are split between Hypter-Threading

cores.

Julian Simon Rauchberger 27

8. Impact on other security boundaries

While being mostly known for breaking isolation between userland and kernel as well as between op-

erating system processes, attacks based on the Meltdown and Spectre vulnerabilities have also been

demonstrated to break other isolation schemes.

8.1. Software guard eXtension

SgxPectre [6] is a variant of the classical Spectre attacks that targets code running inside an Software

Guard eXtension (SGX) enclave. This is especially worrisome considering that SGX has been specifi-

cally designed to allow for the creation of private memory regions that are protected from access even by

code running with higher privileges.

An SGX secure enclave is an isolated execution environment that should provide both confidentially

and integrity to the application inside, protecting it from all other software running on the system.

Even before Spectre, researchers demonstrated that a cache side-channel could be established with a

Prime+Probe attack in order to extract secret data from an enclave [22]. The SgxPectre attack takes this

research a step further by poisoning branch targets used by the code inside the enclave. By carefully

manipulating the branch target buffer with malicious code running on the same system, branches taken

during execution of the enclave code can be influenced. As demonstrated by the researchers, secrets can

then be leaked through selective cache loads, similar to traditional Spectre attacks.

8.2. System Management Mode

Researchers from Eclypsium implemented a Proof of concept 1 that showed how Spectre can also be

used to read data from system management RAM (SMRAM). System management mode, sometimes

referred to as Ring -2, is a high-privilege mode of operation on Intel CPUs that makes use of a dedicated

memory region commonly referred to as SMRAM. After initial configuration during system boot, this

1https://blog.eclypsium.com/2018/05/17/system-management-mode-speculative-execution-attacks/

Julian Simon Rauchberger 28

8. Impact on other security boundaries

memory region normally gets locked through dedicated hardware mechanisms and can then no longer be

accessed, not even by the operating system kernel.

8.3. Conclusion

That both SGX and SMRAM are impacted by Spectre shows how far-reaching the effects of low-level

architectural vulnerabilities can be. Both mechanisms were independently developed and designed to

protect memory contents from all other software running on a system. Even though they worked on

different principles, Spectre attacks can be used to break them without much customization.

Julian Simon Rauchberger 29

9. The return branch predictor

The initial technical blogpost [17] the Google Project Zero team published on the Meltdown and Spectre

attacks noted that there are three different branch prediction mechanisms in modern Intel CPUs. Two

of these, the generic branch predictor and the specialized indirect call predictor, have been reverse engi-

neered thoroughly by the Google Project Zero team and are described in detail in the blogpost. The third

however, the return branch predictor, has not been analyzed in detail yet. The goal of the research con-

ducted for this chapter was to reverse engineer the behavior and demonstrate the possibility of influencing

the outcome of the return branch predictor on a Haswell CPU.

9.1. Function-based control flow on x86

In order to be able to properly analyze the hardware-based features to improve performance of control

flow based on function calls on the Intel architecture, it is first necessary to understand the process they

are trying to improve.

Software often contains functionality that is required in multiple parts of the program. In order to de-

crease program size, it is desirable to reuse the same code rather than to store duplicates. The way this is

generally handled in source code is the introduction of functions. From an abstract perspective, blocks

of code are assigned a name and then referred to wherever needed. When a function is called, execution

temporarily jumps to the code of the function and then resumes wherever it had been called from. In

order to do this, it is necessary to keep track of the address where the function had been called from in

order to be able to jump back there. The x86 architecture provides dedicated instructions to make this

process faster and easier to implement. The CALL instruction is used to redirect execution flow to a func-

tion. It acts like a normal jump but additionally pushes the address after the CALL statement on the stack

to store where execution will have to resume later. The stack is a specialized memory region dedicated

mostly to temporary data such as local variables. When the function has completed, it executes the RET

instruction which is typically the last instruction in every function. It pops the top-most value from the

stack and resumes execution there. While CALL and RET are normally used in pairs, this behavior is

not enforced. CALL simply jumps to the given location and pushes the return address on the stack while

Julian Simon Rauchberger 30

9. The return branch predictor

RET takes whatever value is currently the top of the stack and jumps there.

This means that the value on the stack could also have been modified in the meantime, resulting in the

real execution flow not matching the expected CALL/RET pair. Function calls could also be implemented

with only MOV and JMP instructions but CALL and RET provide a convenient and fast way, so they are

usually used by modern compilers in most cases. Since the presence of CALL and RET is a strong in-

dicator of how execution will flow, it makes sense to include a specialized predictor that is able to take

advantage of those hints.

9.2. Security relevance

The existence of this specialized return branch predictor is described in the Intel 64 and IA-32 Archi-

tectures Optimization Reference Manual where it is explicitly stated in section 3.4.2.1 that the Branch

Prediction Unit (BPU) contains a 16-entry Return Stack Buffer (RSB) which enables the BPU to accu-

rately predict RET instructions [23].

In the simplest case, this would mean that the CPU pushes the addresses of all encountered CALL state-

ments on the RSB, pops an address off upon executing a RET instruction and continues speculative

execution at that address. Such a simple design would however incur many performance penalties. As

the management of process contexts is implemented in the operating system kernel rather than the hard-

ware itself, the RSB would have to be flushed on each process context switch or it would result in many

inaccurate predictions. We therefore assumed from the beginning that the actual implementation would

be more complex than a simple "shadow stack" and include some address-based caching mechanism to

differentiate between CALL and RET pairs in different process contexts.

Depending on the way it is implemented, knowledge of the return branch predictor could be very valu-

able for security research and might allow for a wide range of different attacks. If a way could be found

to dump the return stack buffer, it would be very likely that it might contain addresses from other pro-

cess contexts or even the kernel and thereby allow for generic ASLR/KASLR bypasses. Additionally,

attackers seeking to break out of the confinements of a virtual machine could gather valuable informa-

tion about the host machine kernel. If a way were found to influence the return branch predictor in other

contexts, attacks similar to Spectre would be possible. If a way to reliably redirect the speculative target

of return instructions were to be found, this would be especially critical for the protections provided by

the Retpoline workaround as it relies on attackers being unable to misdirect RET instructions.

Julian Simon Rauchberger 31

9. The return branch predictor

9.3. Experiments

We conducted a range of experiments with the return branch predictor on a Haswell CPU to shed more

light on its behavior. The goal was to determine if the outcome can be influenced in any way.

9.3.1. Experiment 1: Demonstrating the existence of the RSB

As the first step we implemented a test program that would demonstrate the existence of the return stack

buffer. For this, we crafted simple assembly code where the CALL instruction’s corresponding RET

would not return to the initial CALL but rather somewhere else. This results in the code directly after

the CALL instruction being unreachable during real execution. We placed code there that would access a

memory location not present in cache and later measure access time of that address similar to the cache

side-channel in Meltdown/Spectre. If access is fast, it proves that speculative execution had executed the

code after the CALL statement because the RSB predicted the RET would return to the CALL. The code

used can be seen in Listing 9.1.

Listing 9.1: Forcing mispredictions

call A

ret

A:

call B

ret

B:

call C

; the code here is unreachable

mov rsb, [rsb] ; access the side-channel location

jmp $; endless loop to ensure speculative execution ends here

C:

pop rax ; remove return address of "call C" in B

ret ; returns directly to A

To be able to better describe the results of the experiment, we give names to both possible paths. We

call the unreachable code segment in B the "call-ret path" because the only way to reach it is by simple

matching of CALL and RET statements without regard for the POP instruction in C. The actual path that

is executed shall be named "real path" as it requires to keep track of the stack contents and is the one that

will be really executed.

We placed instructions in the call-ret path that would access a memory location which had been removed

from CPU cache with the CLFLUSH instruction beforehand. After executing the code, we timed access

Julian Simon Rauchberger 32

9. The return branch predictor

to that address with the RDTSC instruction. Memory found in the cache would lead to an access time of

around 20 cycles while uncached addresses resulted in over 150 cycles, showing a clear difference.

The results of this experiment were as expected. In almost every round of execution, the call-ret path

is speculatively executed. This clearly demonstrates that the return branch predictor matches CALL and

RET statements without regard for the real stack contents. If there were no RSB mechanism, the CPU

would have no way to predict the call-ret path, demonstrating that a shadow stack or a variant thereof

must exist.

9.3.2. Experiment 2: Memory location dependencies

In their research, Google Project Zero demonstrated that the generic branch predictor only uses the lower

31 bits of the address of the last byte of the source instruction to determine the target address. In our next

test we determine if the RSB records the full 64 bits of the CALL addresses or only a subset thereof.

We modify the code from experiment 1 to map the CALL instruction to a different memory region than

the corresponding RET instruction and observe if the return branch predictor still predicts the call-ret

path. If the RSB only records the lower 31 bits of the addresses like the generic predictor, we expect

prediction of the call-ret path to fail if the addresses of CALL and RET differ in the 32nd bit.

We iterat over all possible combinations of CALL and RET addresses, starting with the address0x1000

and then continuously shifting it left by one bit until we reach 0x400000000000 (the 47th bit set to

1).

Interestingly, this experiment demonstrates some unexpected anomalies in the return branch prediction.

9.3.3. Result 1: RSB length

We found no instance where the call-ret path prediction failed based on the distance between the CALL

and the RET address. Branch prediction succeeded even in the most extreme testable cases with the

addresses being 0x0000000000001000 and 0x0000400000000000. This means that the RSB

stores at least 47 bits but most likely the full 64 bits. Since higher addresses cannot be mapped in

userspace, further experimentation would require kernel modifications.

9.3.4. Result 2: call-ret path mispredictions

We found a small subset of address combinations where prediction of the call-ret path failed during every

run. A simple pattern was not immediately visible, but we found that all failures can be put in one of two

categories.

Category 1

Julian Simon Rauchberger 33

9. The return branch predictor

CALL address RET address bit shift call-ret pred.

0x0000000000002000 0x0000000000400000 09 0

0x0000000000004000 0x0000000000800000 09 0

0x0000000000008000 0x0000000001000000 09 0

0x0000000000010000 0x0000000002000000 09 0

0x0000000000020000 0x0000000004000000 09 0

0x0000000000040000 0x0000000008000000 09 0

0x0000000000080000 0x0000000010000000 09 0

0x0000000000100000 0x0000000020000000 09 0

0x0000000000200000 0x0000000040000000 09 0

0x0000000000400000 0x0000000000002000 09 0

0x0000000000800000 0x0000000000004000 09 0

0x0000000001000000 0x0000000000008000 09 0

0x0000000002000000 0x0000000000010000 09 0

0x0000000004000000 0x0000000000020000 09 0

0x0000000008000000 0x0000000000040000 09 0

0x0000000010000000 0x0000000000080000 09 0

0x0000000020000000 0x0000000000100000 09 0

0x0000000040000000 0x0000000000200000 09 0

Table 9.1.: 9 bit shift predictions

The first of these is when the addresses are shifted by exactly 9 bits. The behavior was not observed with

any other shift widths. Table 9.1 shows all of the address combinations where we observed this anomaly.

While the cause for this behavior is not clear immediately, it can be observed that the bits are the same

as the collisions that the generic predictor cannot differentiate. The colliding bits observed by Google

Project Zero are shown in Table 9.2.

Category 2

The other category where the call-ret path cannot be predicted is when both of the addresses are larger

than 231. While the full list is too long to include in this paper, an excerpt demonstrating the anomaly

can be seen in Table 9.3. The third table shows by how many bits the first address is shifted compared to

the second while the last column shows during how many of the 1000 test iterations the call-ret path had

been predicted. Prediction starts to fail in the line where both addresses are larger than 231. The same

can also be observed for all other combinations not pictured here.

Julian Simon Rauchberger 34

9. The return branch predictor

bit A bit B

0x40.0000 0x2000

0x80.0000 0x4000

0x100.0000 0x8000

0x200.0000 0x1.0000

0x400.0000 0x2.0000

0x800.0000 0x4.0000

0x2000.0000 0x10.0000

0x4000.0000 0x20.0000

Table 9.2.: Generic predictor collisions

9.3.5. Analysis

The results of this test case clearly demonstrate that the actual return branch prediction uses not only the

RSB but also another mechanism. We assume that this is most likely to avoid context-switching based

performance penalties.

We can see that the address folding algorithm used by the generic branch predictor also seems to be in

use here, however we can currently not be sure in what way. While the RSB itself clearly stores more

than 31 bits of the addresses, the folding algorithm seems to be able to only process 31 bits of input. The

unexpected behavior seems to occur when the input to the folding algorithm consists only of zeroes.

This happens when both addresses are larger than 231 because in that case the upper bits are simply

cut, leaving only zeroes for both addresses. As demonstrated by Google Project Zero, certain bit com-

binations cannot be differentiated by the algorithm. We find it highly likely that these bits are XOR-ed

together, resulting again in input to the folding algorithm containing only zeroes.

While the experiment demonstrated that there seems to be an edge case when the input to the folding

algorithm consists of only zeroes, further testing is required. It currently seems as if both the address of

the CALL as well as the RET statement are inputs to the branch prediction. This however seems unlikely

as the purpose of the branch predictor is to determine the address of the CALL statement given only the

address of the RET statement. In this case, it is not possible for the result of the algorithm to be part of

the input.

Julian Simon Rauchberger 35

9. The return branch predictor

CALL address RET address bit shift call-ret pred.

0x0000000000001000 0x0000400000000000 34 894

0x0000000000002000 0x0000400000000000 33 895

0x0000000000004000 0x0000400000000000 32 896

0x0000000000008000 0x0000400000000000 31 895

0x0000000000010000 0x0000400000000000 30 896

0x0000000000020000 0x0000400000000000 29 895

0x0000000000040000 0x0000400000000000 28 899

0x0000000000080000 0x0000400000000000 27 896

0x0000000000100000 0x0000400000000000 26 897

0x0000000000200000 0x0000400000000000 25 896

0x0000000000400000 0x0000400000000000 24 895

0x0000000000800000 0x0000400000000000 23 895

0x0000000001000000 0x0000400000000000 22 897

0x0000000002000000 0x0000400000000000 21 897

0x0000000004000000 0x0000400000000000 20 898

0x0000000008000000 0x0000400000000000 19 897

0x0000000010000000 0x0000400000000000 18 897

0x0000000020000000 0x0000400000000000 17 896

0x0000000040000000 0x0000400000000000 16 895

0x0000000080000000 0x0000400000000000 15 0

0x0000000100000000 0x0000400000000000 14 0

0x0000000200000000 0x0000400000000000 13 0

0x0000000400000000 0x0000400000000000 12 0

0x0000000800000000 0x0000400000000000 11 0

0x0000001000000000 0x0000400000000000 10 0

0x0000002000000000 0x0000400000000000 09 0

0x0000004000000000 0x0000400000000000 08 0

0x0000008000000000 0x0000400000000000 07 0

0x0000010000000000 0x0000400000000000 06 0

0x0000020000000000 0x0000400000000000 05 0

0x0000040000000000 0x0000400000000000 04 0

0x0000080000000000 0x0000400000000000 03 0

0x0000100000000000 0x0000400000000000 02 0

0x0000200000000000 0x0000400000000000 01 0

Table 9.3.: Call-ret prediction failures

Julian Simon Rauchberger 36

9. The return branch predictor

9.3.6. Experiment 3: Introducing training loops

To further analyze the behavior of the return branch predictor, we tested how the history of previous

branches influence further prediction of different addresses.

We started by running 100 training iterations where the CALL instruction had been placed on address A

and the RET instruction on address B. After that, we ran a single round where the CALL instruction is on

address C and the RET instruction on address D. We then determined if the training runs with addresses

A and B had any influence on the results of the prediction of the RET between C and D.

We then tested this with different values for the training addresses A and B.

We started by picking random training addresses that both had multiple 1s and 0s in different locations.

We found that this did not influence the outcome of the call-ret path prediction in any way. We observed

the same anomalies where the prediction did not succeed as before.

An interesting result is produced if the only bits set in the training addresses are in bits higher than 31.

This results in the input to the folding algorithm being only zeroes during the training phase. When

the actual CALL and RET test is executed, the return predictor fails to predict the call-ret path in every

instance except for when the RET address is placed on 0x1000, independently of where the CALL

address is.

Setting only a few 1s in both training addresses resulted in having some additional address combinations

where branch prediction fails during the actual tests. Which that are depends on the bits set during the

training phase, we could however not determine any pattern of which addresses start to fail when setting

specific bits.

In summary, experiment 3 shows that the input to the branch prediction algorithm is most likely the

history of recent branches as well as the address of the RET instruction. Initially it seemed as if the

address of the CALL instruction is an input as well, however this was most likely implicit due to previous

test runs. Since we ran every CALL and RET combination 1000 times, the previous runs most likely

influence the branch history buffer (BHB) in a way that made it seem as if the CALL instruction had

been input as well.

9.3.7. Conclusion

We have demonstrated that there is a possibility to influence the results of the return branch predictor

on the architecture tested. While further research is required to determine the exact behavior of the

algorithm, our results suggest that it is in some ways similar to the generic predictor. Reverse engineering

undocumented CPU behavior is a time-consuming and error-prone process as it is hard to take all possible

factors that could influence the code being executed into account. We hope that our results can be taken

Julian Simon Rauchberger 37

9. The return branch predictor

as a basis for further research into the exploitability of the demonstrated behavior.

Julian Simon Rauchberger 38

10. Alternative side-channels

To the best of our knowledge, there are currently no other publicly known, feasible side-channels to leak

data from speculative execution other than the widely employed cache loads. It seems likely that addi-

tional vectors that have not been found yet exist. They could have substantial impact on the exploitability

of known issues such as branch target injection since they could make attacks feasible that were previ-

ously thought to be unexploitable because the required side-channels were too hard to establish. This

section aims to explore possible ways to leak data from code executed out-of-order and provide points

of reference for further research.

The goal is to determine additional side-channels that can be used to leak data obtained during out-of-

order execution in way that they persist across a rollback.

10.1. Defining side-channels

To give a more detailed description, we presume that the CPU is in a microarchitectural state A at a

given time. Then, a number of instructions Im that generate a range of modifications M is executed

out-of-order and the microarchitectural state becomes A + M . However, before this new state can be

retired, an instruction Iv that generates an access violation is executed. Before retirement, the reorder

buffer detects that the instruction order determines that Iv must be executed before Im which means that

the modifications M made by Im have to be rolled back. The microarchitectural state is now A+M−M

which should result in A but actually produces a state A′ since some implicit modifications remain. The

differences between A and A′ are the side-channels that can be employed to leak data from out-of-order

execution.

In the classical Meltdown and Spectre attacks, cache-loads have been employed as the side-channel.

Since data loaded into the cache hierarchy during the execution of code that is later rolled back will

not be removed, this constitutes one of the aforementioned differences between A and A′ that lead to

side-channels. It becomes evident that cache loads might not be the only difference that exists, and

further research is required to determine other possible attack vectors. It should be noted that different

side-channels could also lead to new attack surface as they might allow for the exploitation of known

Julian Simon Rauchberger 39

10. Alternative side-channels

vulnerabilities in more constrained environments previously not deemed possible.

In order to analyze different approaches, a suitable test-environment is required. From the side-channel

definition described above, we deduct that a proof of concept requires the following stages:

1. Preparation of a microarchitectural state A that is suitable for triggering of the side-channel.

2. Execution of a violation instruction Iv that ensures that the modifications of all subsequent code

will be rolled back.

3. Execution of code Im that creates one or more modifications Mside − channel that can later be

detected.

4. Code that detects the differences between A and A′ and can extract Mside− channel after other

modifications have been rolled back.

10.2. Choosing the violation instruction

One of the challenges described in this approach is the choice of the violation instruction Iv. It is strictly

required to ensure that none of the instruction in Im will retire and by definition must create an invalid

state, such as an access violation or a page fault, that leads to an exception. However, on the Intel x86

architecture, these errors are normally handled by the kernel which means that not only a transition to ring

0 occurs but also that a potentially large amount of uncontrolled kernel code runs between the generation

of the side-channel and the extraction of the data. There is a large chance that this delay might impact

the microarchitectural state in a way that modifies or destroys the side-channel and could lead to both

false positives and false negatives. It is therefore desirable that the whole program can run in userland

without actual transitions of privilege level.

One solution would be to ensure that the aforementioned code runs during a branch misprediction instead

of using a violation instruction Iv. This would ensure that none of the instructions retire without requiring

any exceptions. This approach has several downsides, most notably the increased complexity of the code

and also vastly lowered portability. As the exact details of branch prediction changes between CPU

generations, it would be required to write code that can intentionally cause mispredictions in a controlled

fashion individually for every targeted model.

10.2.1. Restricted transactional memory

We chose to make use of restricted transactional memory (RTM) which is part of the Intel transactional

synchronization extensions (TSX), similar to the approach described in the original Meltdown paper [16].

Julian Simon Rauchberger 40

10. Alternative side-channels

This instruction set extension is available beginning with the Haswell generation and therefore featured

on most modern processors. During our preliminary analysis of Meltdown and Spectre, we found that

RTM provides an easy to use, flexible and portable way of running out-of-order code and ensuring that

it never retires without requiring privilege level switches or running uncontrolled, non-userland code.

As the name implies, TSX was introduced to allow for hardware-accelerated memory transactions. It

allows to define a block of code that runs as a single atomic operation, meaning that all memory modifi-

cations made within that block will either be visible at once or be completely rolled back. For rollbacks,

TSX requires the programmer to specify an alternative path that will be executed in these cases. Roll-

backs can occur at any time, for instance as a result of context switches or memory pressure. It is also

possible to manually abort a TSX transaction by executing a specific instruction. To test out-of-order

execution, we create a transaction and immediately abort it. This ensures that none of the executed in-

struction will ever retire and allows us to easily create a portable, controlled environment that minimizes

the amount of code running between creation and extraction of the side-channel.

10.3. Creating test code

To facilitate hardware-backed transaction, Intel introduced a range of new instructions. XBEGIN marks

the beginning of a transactional block and requires the programmer to specify the location where exe-

cution should continue in case of a rollback. Similarly, XEND marks the point where the modifications

should be made visible to other code. XABORT takes an error code as argument and can be used to

voluntarily abort the transaction at any time.

Listing 10.1 shows a commented version of the general structure our test program has.

Listing 10.1: RTM-based speculative execution

run_test_rtm:

; code to prepare the microarchitectural state A before out-of-order

; execution to be inserted here

xbegin rtm_done ; start of the transcation, rtm_done will be

; executed in case of a rollback

xabort 1 ; the transaction is immediately aborted

; this code will only run during out-of-order execution and

; will never retire

; code that creates the side-channel to be inserted here

xend ; ends the transaction and ensures that the XABORT will

; be detected here at the latest

rtm_done:

; this code will be executed once the transaction has been aborted

Julian Simon Rauchberger 41

10. Alternative side-channels

; code to analyse the new architectural state A’ and extract the

; side-channel information to be inserted here.

ret

This structure allows great control over which code will retire and which will not without any ring 0

transitions and should work on all processors supporting TSX. This ensures that external pollution of the

architectural state is kept to a minimum while also allowing for great portability that does not rely on any

undocumented branch prediction behavior.

10.4. Performing tests

To ensure the validity of our approach, we implemented the original Meltdown attack on a vulnerable

Linux machine and confirmed that it works as expected. Additionally, we tested a new approach based

on timing differences.

10.4.1. Cache hierarchy side-channel

We extract a secret value through a cache-based side-channel. To leak one bit, a designated memory

location is flushed from cache using the CLFLUSH instruction. Speculatively run code then accesses the

memory location if the bit to be leaked is one or skips the access if it is zero.

Afterwards, the amount of cycles to read the memory location is measured and if it is below 150 cycles,

it is assumed to be cached already, hence the leaked bit must have been one. This test is repeated n times

for each bit of the secret value and a probability for the bit to be one or zero is calculated based on how

many times either of those values appears during the test runs. We found that around 100 runs provide

reliable results, but more are better as there might be short periods of times where all accesses are slow

because of memory pressure.

Our test implementation of Meltdown was successfully able to read data in the syscall table from userland

10.4.2. Timing-based side-channel

To see if data can be extracted without relying on the cache-hierarchy, we tested and implemented a

timing-based approach. The basic principle is to control how long out-of-order execution continues de-

pending on the data that should be leaked. By using RDTSC to get a high-performance counter, it is

possible to approximate how many CPU cycles the transaction takes. Code running inside the transac-

tional block could then be written to take a long time if the bit that should be leaked is a one or complete

very fast if it is a zero.

Julian Simon Rauchberger 42

10. Alternative side-channels

For this approach to work, it is necessary to be able to abort out-of-order execution at any time. Previous

analysis conducted as part of this research and described in section 6 showed that there is a wide range

of instructions that stop speculative execution and it seemed highly likely that the same behavior could

be found in regular out-of-order execution as the two are very similar.

We implemented a proof of concept without speculative execution by writing assembly code that runs a

very slow loop if the bit to be leaked is a one and skips the loop if it is zero. We then ran the code multiple

times for each bit of a secret value and recorded the execution times. As expected, a clear difference was

visible, and it was easy to extract the secret using only the execution duration of the code block. We then

ran the same code using an immediately aborted TSX transaction as described above. We experimented

with different amounts of runs for each bit and attempted to filter outliers where the CPU was preempted

during execution but were unable to detect any meaningful differences in execution time. It seems that

the cycle penalty induced by aborting the transaction is about the same as the amount of instructions

that can be executed before abortion. In all cases, we monitored a constant minimum execution time of

around 170 cycles that did not differ depending on the actual work done during the transaction.

10.5. Lazy FPU bug

The lazy FPU flaw is at the time of writing the newest publicly disclosed speculative execution side-

channel attack. It was announced by Intel on 13 June 2018 and demonstrates yet another minor flaw

that becomes a major problem for system security when combined with a side-channel for extraction

of information from speculative execution. To demonstrate the versatility of the TSX-based approach

described in Section 10, we implemented a proof of concept using this methodology.

At the time of writing, no publicly available proof of concept exists for this vulnerability and detailed

descriptions are few and far between. In order to give a more complete overview of the current state of

speculative execution attacks, we analyze the root cause of the vulnerability, implement and test a proof

of concept on the Linux kernel and explain countermeasures. This section applies much of the theoretic

knowledge presented in this paper to show how a practical attack can be researched and implemented.

10.5.1. Root cause

The Common Vulnerabilities and Exposures (CVE) number assigned to the Lazy FPU information leak

is CVE-2018-3665 but both the MITRE CVE dictionary1 as well as the NIST National Vulnerability

Database (NVD) 2 list the entry as reserved for a specific security problem but give no further information

1http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3665
2https://nvd.nist.gov/vuln/detail/CVE-2018-3665

Julian Simon Rauchberger 43

10. Alternative side-channels

at the time of writing. More helpful information is provided by the original Intel advisory3 as well as

Red Hat4. These articles make it clear that the cause of the vulnerability lies in deferred restoration of

FPU registers on context switches.

Modern Intel CPUs contain a range of floating-point unit (FPU) registers which serve specific purposes

such as performing accelerated floating-point arithmetic or SIMD (single instruction, multiple data) op-

erations. They can greatly accelerate certain classes of calculations but also incur performance overhead.

Every time the CPU switches between process contexts, all registers must be saved to main memory and

later restored. FPU registers are often especially large and can therefore have a significant impact on the

performance of context switches. To lower the penalty, Intel introduced a way of performing FPU regis-

ter restores only when the process makes actual use of the registers. This ensures that processes which

do not use the FPU registers will incur no overhead because the registers will not need to be restored for

them.

The Intel 64 and IA-32 Architectures Software Developer’s Manual [23] gives further details about the

technical details of this feature. Section D.3.6.1 states that lazy restoring of x87 FPU register works

through the Task Switched bit of the CR0 register in conjunction with Device Not Available (DNA) in-

terrupts. The Task Switched bit of the CR0 register is set every time the CPU performs a task switch

with supported hardware accelerated mechanisms and needs to be manually cleared with the CLTS in-

struction. When lazy FPU restoration is enabled, all access to an FPU register while the Task Switched

bit is set to one will result in a DNA interrupt on line 7. The associated interrupt handler can then store

the current register state, restore the old state associated with the process, clear the TS bit and resume

execution where the interrupt appeared. This mechanism allows to defer FPU register restores to when

they are actually needed and can therefore improve performance.

Normally, this would not pose any threats but in the context of speculative execution side-channel attacks,

the potential impact on security becomes obvious. Because out-of-order execution allows to execute

multiple instructions before exceptions and interrupts are handled, it should become possible to read FPU

registers and leak their contents through side-channels before the DNA interrupt handler will be executed.

Therefore, it should be possible to read another task’s FPU registers before the currently running task’s

state is restored. To test this hypothesis, we implemented a proof of concept to see if information written

to an FPU register in one process can be observed in another process during out-of-order execution.

3https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00145.html
4https://access.redhat.com/security/cve/cve-2018-3665, https://access.redhat.com/solutions/3485131

Julian Simon Rauchberger 44

10. Alternative side-channels

10.5.2. Proof of concept implementation

The setup consists of two independent programs, a getter that will attempt to continuously read the

contents of an FPU register and leak it through a side-channel as well as setter that will write a magic

value to the same register. For this proof of concept, we make use of the XMM0 register which is part

of the SSE2 (Streaming SIMD Instructions 2) supplementary instruction set but any other FPU register

could be used as well.

The setter program is very simple, it uses the MOVSS assembly instruction to write a known, hardcoded

magic constant into the XMM0 register and then calls sched_yield to signal the kernel that another

process should be executed. To increase the likelihood of winning the race conditions, this procedure is

repeated in an endless loop.

The getter program is based on the Intel TSX code described in Section 10 and leaks the obtained infor-

mation through a cache hierarchy side-channel. It uses the CVTSS2SI instruction to read the contents of

the XMM0 register into a regular register. It will then compare the value read to the known magic number

written in the setter program. If the values are equal, it will read from a predetermined memory location

to fetch it into the cache. By measuring access time of this location later on, it can be determined if the

contents of XMM0 were equal to the magic value or not. Figure 10.1 shows the process in detail. The

measurement operation will be performed continuously and every 100000 rounds, the percentage of suc-

cessful detections of the magic value will be printed. Excerpts of the code can be found in Listings A.1

and A.2 in the appendix.

The tested Linux 4.8 kernel supports both eager and lazy loading of FPU registers on context switches.

The currently selected method will be printed during boot and can be changed with the eagerfpu kernel

boot parameter. On our tested Ubuntu 16.10 installation, eager was the default option and lazy had to be

manually activated. Commit messages5 from Andrew Lutomirski shed light on this decision. Because

recent processors have dedicated, optimized instructions for storing and loading the FPU state, the over-

head is in practice not as large as one would expect. Furthermore, laziness could be overly optimistic

because even glibc uses SSE2 nowadays and if many actual restores are required, eager fetching is faster

than handling the DNA interrupt. Additionally, manipulation of the TS bit itself is relatively slow, so

there is little reason to use the lazy strategy instead of eager on modern hardware.

This means that default installations of Ubuntu on relatively recent CPUs should not be affected by the

lazy FPU attack in practice. We successfully tested and confirmed the vulnerability on an Ubuntu virtual

machine with lazy context switches manually activated, running on a host system which used the eager

strategy. This confirms that the vulnerability can occur in virtual machines, independently of weather the

5https://patchwork.kernel.org/patch/8095191/

Julian Simon Rauchberger 45

10. Alternative side-channels

access A if magic
value is found

begin TSX
transaction

read XMM0 register

TSX transaction end

abort TSX
transaction

Process A Process B

while running test while running test

time access to A

increment counter if
access fast

write magic value to
XMM0

sched_yield

normal execution

executed out-of-order
and rolled back

Figure 10.1.: Lazy FPU proof of concept

host is affected or not.

10.5.3. Test results

Our tested VM used two virtual CPU cores with the actual host having four cores and no hyperthreading.

When running only the getter program without any setters, the number of detection of the magic value

was as expected extremely low, typically ranging between 0.01% and 0.1% with many rounds placing

on the lower end of the spectrum. Of course, these were all false positives, the occurrence of which

can easily be explained by the nature of the cache hierarchy side-channel. Measuring access times and

manipulating the content of the cache in a multi-threaded environment can never be perfectly controlled,

a small number of false positives is always to be expected by the attack developer. We also found that

the number of false positives increases inside a virtual machine compared to a bare-metal installation,

suggesting that additional context switches make measurements fuzzier.

Interestingly, the addition of a single setter process had little to no impact on the results. We assume

that this is dependent on the operating system scheduling algorithm. Only when adding a second setter

and thereby matching the number of virtual cores could an obvious effect be observed. With one getter

and two setters, successful detections of the magic value ranged between 20% and very close to 100%,

depending on the individual run with each consisting of 100000 attempts. This demonstrates a clear

Julian Simon Rauchberger 46

10. Alternative side-channels

correlation and that it is indeed possible to bypass DNA interrupts and read FPU registers with speculative

execution side-channel attacks, however the attack sill strongly depends on the environment it is run in,

especially the OS scheduling algorithm. As a matter of circumstances, it could still be extremely hard if

not impossible to reliably target the registers of a specific process.

10.5.4. Countermeasures

The countermeasure to this attack is to simply not use the lazy loading scheme and opt for a more secure

eager fetching. On modern hardware, there should be no performance penalty as eager loading it faster

and preferred anyways.

This attack demonstrates again very well the core issues behind speculative execution side-channel at-

tacks. Similar to Meltdown, the problem is that enforcement of the security policy (in this case the

interrupt) is delayed and not immediately handled. As long a side-channels that can leak information

from speculative execution exist, interrupts cannot be seen as a valid strategy to protect data from being

accessed.

Julian Simon Rauchberger 47

11. Bypassing hardware breakpoints with

speculative execution

Breakpoints are an important debugging tool and very helpful for determining the root cause of obscure

software issues. There are two different types that have different use-cases: software breakpoints and

hardware breakpoints.

11.1. Software breakpoints

Software breakpoints are represented by the INT 3 instruction and can be placed anywhere in the pro-

gram flow. Contrary to other interrupts which are encoded using two bytes, the opcode for software

breakpoints is 0xCC, a single byte which makes it easier to replace any instruction with it. If a program-

mer wants to set a software breakpoint, the debugger will replace the targeted instruction with INT 3,

causing the program to generate a software interrupt upon execution. The kernel will then pause the de-

bugee and notify the debugger of the breakpoint hit. Subsequently, the debugger of course has to replace

the software breakpoint with the original instruction in order to avoid modifying program logic. Soft-

ware breakpoints are widely used and have the advantage that any number of them can be placed at the

same time, but they can also be easily detected by the program being debugged which makes them hard

to use in malicious software that actively monitors code for modifications to deter reverse engineering.

Furthermore, software breakpoints can only trap execution flow and cannot trigger on memory reads or

writes. While being useful for debugging, the use of software breakpoints requires modification of the

code which shall be monitored which makes them unsuitable for many reverse engineering tasks and for

use in rootkits.

11.2. Hardware breakpoints

Hardware breakpoints work differently and have many advantages regarding their stealth capabilities.

They are implemented at the hardware level through special debug registers. These privileged registers

Julian Simon Rauchberger 48

11. Bypassing hardware breakpoints with speculative execution

can only be read and written two at privilege level 0 and allow for the configuration of invisible hardware

breakpoints. The registers DR0 to DR3 contain the linear addresses associated with their respective

breakpoints. This also demonstrates the biggest limitation, there can only be four different hardware

breakpoints at any time. DR7 is the debug control register and can be used to selectively enable the four

breakpoints and to specify the conditions on which they activate. It is possible to trigger a break on

execution, data write and both data read/write. The last register, DR6, holds information about which

debug conditions have occurred, its low order bits are set to one when a breakpoint triggers and before

the debug exception handler is executed.

The big advantage of hardware breakpoints over software breakpoints is that they are completely invisible

as they do not require memory modifications and that they can be used to monitor memory reads and

writes. These features have been abused by rootkits in the past to stealthily monitor memory regions.

Longkit [24] uses this feature to make a small 8 byte region of memory that holds the debug exception

handler invisible to the operating system. Most of the code of Longkit resides in the SMRAM which

cannot be read by the operating system, even with Ring 0 privileges. To take control of the host OS, the

rootkit replaces the debug exception handler with a minimal version that causes a System Management

Interrupt (SMI) to execute the rootkit functionality whenever a hardware breakpoint is hit. DR1 to DR3

can then be used to intercept arbitrary kernel functions. DR0 is reserved for the stealth module of Longkit.

By using it to monitor reads and writes to the debug exception handler, the only small modification made

to the kernel can be rendered invisible to antivirus software. When an attempted read is detected, Longkit

will be triggered and replace the result with the old, unmodified value so none of the changes made to

OS memory are actually visible. This ensures a high grade of stealth because it is impossible to directly

read any of the memory where Longkit resides or where it has made modifications.

11.3. Implementing a proof of concept

Because hardware read/write breakpoints only trigger when the respective instructions retire, it should be

possible to read the memory regions protected by them with a speculative execution side-channel attack.

This could prove helpful to detect extremely stealthy malware like Longkit.

In order to test this hypothesis, we implemented a proof of concept kernel module that reads 8 bytes

of the debug exception handler and compares them to a known good value. First, the location of the

debug exception handler is determined by parsing the interrupt descriptor table (IDT). The location of

the IDT itself is stored in the interrupt descriptor table register (IDTR) that can be read with the SIDT

instruction.

Then, 8 bytes of the determined location are read using two different methods. First, the data is read

Julian Simon Rauchberger 49

11. Bypassing hardware breakpoints with speculative execution

speculatively with the TSX method described in Section 10. Then, the same memory location is read

normally with a call to memcpy. The two results can then either be compared to a list of known good

and bad values or simply to each other in order to detect inconsistencies which normally should never

occur.

A detailed description of the deteciton method is depicted in Figure 11.1.

compare results of normal
and speculative read

modified debug exception
handler

SMRAM rootkit

normal readreturn modified value

malicious handler

modify read result

re
tu

rn
 m

od
ifi

ed
 v

al
ue

trigger debug exception

read
rootkit detection

speculative read
speculative read

return real value

Figure 11.1.: Rootkit detection process

We tested the kernel module inside a QEMU virtual machine that was booted using a modified version

of SeaBIOS1 with the Longkit payload. We found that the proposed methodology can be reliably used

to read memory protected by debug registers without triggering them. Excerpts of relevant parts of the

code can be found in Listing A.3 in the appendix.

1https://github.com/coreboot/seabios

Julian Simon Rauchberger 50

11. Bypassing hardware breakpoints with speculative execution

This demonstration of using speculative side-channels to bypass hardware breakpoints shows that the

technique can also be employed for other purposes. Rootkit detection software could detect the presence

of otherwise extremely stealthy malware. However, malware authors might also be able to develop new

anti-debugging techniques that make it harder for specialists to analyze malicious software as they can

no longer rely on hardware breakpoints always triggering when a memory region is being read.

Julian Simon Rauchberger 51

12. Long-term solutions to speculative

execution side-channel attacks

In the Sections 3 and 4, we describe currently available protection mechanism that provide short-term

mitigations against the risks posed by speculative execution side-channel attacks. However, these software-

based protections cannot be seen as a comprehensive solution but rather a workaround born of necessity.

They incur significant performance issues for certain workloads and new bypasses are regularly discov-

ered with new variants of Spectre, indicating that they rather fix symptoms than the underlying problems.

12.1. Approaches to a solution

A holistic solution to this class of attacks will require modifications to processor design, very likely sig-

nificant ones. In this section we describe three different approaches that address the core issues identified

and provide an evaluation of required modifications.

12.1.1. Removal of offending features

The most direct approach to protect against data leakage from Spectre and Meltdown attacks would be

the removal of all speculation, including any out-of-order execution. If executed instructions were to

immediately retire and no assumptions whatsoever about future program flow were to be made, none

of the flaws described in this paper could exist. While certainly representing a comprehensive solution,

this approach can be seen as theoretical at best. Out-of-order execution and closely related features

such as branch prediction make up a large part of recent advancements in processor design. Without it,

performance would degrade to a completely unacceptable level. An architectural redesign to rely less

on out-of-order execution is also unlikely if not impossible. For these reasons, this approach can be

considered too impractical as a long-term solution.

Julian Simon Rauchberger 52

12. Long-term solutions to speculative execution side-channel attacks

12.1.2. Preventing access to out-of-context information

The second solution is based on the removal of any mechanism that allows an attacker to gain access to

any information outside of her context. As a simple example, under this paradigm, Meltdown attacks

would be prevented by ensuring that instructions executed out-of-order cannot access memory they lack

permissions for. While straightforward for Meltdown, enforcing this paradigm is more complicated for

Spectre. From an architectural point of view, this would require all microarchitectural data structures

to be exclusive to their respective contexts. For instance, every process would need its own, logical

branch prediction table to ensure it cannot influence the tables of the other processes. This can easily

be achieved by simply clearing the data structures on each context switch, but this is again likely to

induce unacceptable performance degradation. At the very least, a partitioning algorithm would be

required that can exclusively assign resources to contexts. Implementation of this could be troublesome

both from a hard- as well as a software perspective. To achieve performance similar to the current

design, a major increase in total size for all microarchitectural data structures would most likely be

required. With operating systems usually running a very large number of processes at the same time,

selective flushing of structures would most likely be unavoidable. Further research would be required to

determine optimal sizes that can achieve similar performance to the current design. In order to introduce

such an isolation scheme in a relatively efficient way, it would most likely be necessary to modify current

operating systems to take advantage of them. In some cases, security contexts might not be immediately

obvious from a low-level perspective (e.g. a JavaScript sandbox that needs to be isolated from the rest of

the data in the same process) which means that this solution would also require new interfaces that can

communicate this information to the kernel or the processor.

12.1.3. Removing the side-channel(s)

The third solution to render speculative execution side-channel attacks useless would be the removal

of side-channels that can be used to leak data. It does not matter if kernel memory is readable during

speculative execution or if the branch predictor can be abused if there is no way for the attacker to leak

any of the obtained information to the outside. SafeSpec[25] is a proposed solution to Meltdown and

Spectre that leverages shadow data structures that is used during speculative execution. The basic idea

is that all operations executed during speculative execution only modify this shadow data structure and

have no influence on the real cache. If a rollback is required, flushing the shadow data structure is enough

to ensure that no modifications can be observed afterwards. This approach is very practical as it has little

performance overhead and only requires the implementation of the described shadow data structures.

However, great care must be taken to ensure that no side-channels remain and that no new ones are

Julian Simon Rauchberger 53

12. Long-term solutions to speculative execution side-channel attacks

introduced. If a completely new side-channel that had not been taken into account when designing the

countermeasures were to be found, the same issues we are currently facing would arise again.

12.2. Combined approach

From a practical point of view, the most reasonable solution would be a combination of technique two and

three. The removal of all currently known side-channels should be a realistic mid- to long-term endeavor.

As mentioned, SafeSpec already provides a reasonable basis for further research in this direction.

Simply preventing access to all out-of-context information alone is most likely infeasible as it is ex-

tremely complex to do so without major impacts on performance. However, preventing access where

possible can be seen as an important defense-in-depth measure if another side-channel were to be found.

It should be made as hard as possible to manipulate the outcome of branch prediction and access to

memory that bypasses the rules defined in the page tables should be prevented.

It is the opinion of the authors that the best long-term solution to speculative execution side-channel

attacks would be to remove known side-channels by redesigning affected processor parts and to ensure

that exploitation of vulnerabilities was to be as hard as possible in case another side-channel should be

detected.

Julian Simon Rauchberger 54

13. Conclusion

Speculative execution side-channel attacks are a complex topic of research with many different aspects.

While Meltdown was an interesting and dangerous vulnerability in itself, it could be patched in software

fairly quickly and relatively easily. As we have shown, Spectre is much more dangerous as it represents

a full class of vulnerabilities where additional research is still required to find and mitigate all possible

attack vectors. It is very likely that new Spectre-style attacks will continue to be found in the foreseeable

future. At the time of writing, it is already complex to keep track of all variants and the associated

patches. This situation is most likely going to get even worse as more attacks are found. To keep the

rising complexity manageable, it might be necessary to create and maintain an up-to-date database of all

vulnerabilities, their impact and available mitigations across platforms. This would however be a difficult

task in itself and require collaboration by experts from major vendors.

We have also shown how difficult it is to investigate code running in speculative execution. While some of

the patterns we identified in this paper can be used to make the process easier, newly arising issues might

require different testing methods. Reverse engineering undocumented hardware behavior is very time

consuming but necessary as it is required to better understand the precise impact of the vulnerabilities.

In order to facilitate better research, it would be desirable if more details on the inner workings of certain

parts of CPUs were to be released. Currently, research such as ours is required get the understanding that

can be built upon to uncover and protect against further vulnerabilities.

We also found that in some cases, speculative execution reads can be used as protective measures. For in-

stance, we demonstrated how they can be used to detect otherwise extremely stealthy rootkits. However,

we think that malicious use far outweighs possible benefits and call for these vulnerabilities to be miti-

gated by hardware design changes. We proposed three ways that the vulnerabilities could be fixed and

recommended a combination of two of them to ensure defense-in-depth with low performance impact.

Speculative execution side-channel attacks are most likely going to be a part of strong threat models in

the future. It is going to take years before all CPUs currently in use are replaced with newer models

that include protections in hardware design. More research on both attacks and mitigations is required in

order to stay ahead of malicious actors and ensure safety and security even when vulnerable CPU models

are in use.

Julian Simon Rauchberger 55

A. Source Code Listings

Listing A.1: Lazy FPU assembly

global flush_cache

global time_access

global run_test_rtm

section .text

run_test_rtm:

xbegin rtm_done

xabort 1

call run_test

xend

rtm_done:

ret

run_test:

cvtss2si eax, xmm0

cmp eax, 0xff80a2a1

jne skip_access

mov rax, [rdi]

skip_access:

ret

flush_cache:

clflush [rdi]

cpuid

mfence

cpuid

ret

Julian Simon Rauchberger 56

A. Source Code Listings

time_access:

cpuid

mfence

cpuid

rdtscp

mov rbx, rax

mov rax, [rdi]

rdtscp

sub rax, rbx

ret

Listing A.2: Lazy FPU timing logic

uint64_t attempt_times[ATTEMPTS];

uint64_t result = 0;

uint64_t secret = 0xcafebabe;

while(1) {

memset(attempt_times, 0x00, sizeof(attempt_times));

for(uint64_t bit = 0; bit<64; bit++) {

uint64_t bit_mask = (uint64_t)1 << bit;

for(uint64_t attempt=0; attempt<ATTEMPTS; attempt++){

sched_yield();

flush_cache(p);

run_test_rtm(p, bit_mask, &secret);

attempt_times[attempt] = time_access(p);

}

uint64_t min_time = attempt_times[0];

uint64_t probably_one_count = 0;

for(uint64_t i=1; i<ATTEMPTS; i++) {

if(attempt_times[i] < min_time) {

min_time = attempt_times[i];

Julian Simon Rauchberger 57

A. Source Code Listings

}

if(attempt_times[i] <= ACCESS_TIME_CACHED) {

probably_one_count++;

}

}

printf("%d/%d attempts\n", probably_one_count, ATTEMPTS);

}

}

Listing A.3: Longkit detection module

// performs the "sidt" instruction and returns the result

_idtr = read_idtr();

memcpy(&_idt1, (const void *)_idtr.base + 16*0x01, sizeof(_idt1));

addr = ((unsigned long)_idt1.offset_high << 32) | (_idt1.offset_middle << 16) | (

_idt1.offset_low);

printk(KERN_INFO "attempting to leak data from %02lx\n", addr);

for(uint64_t bit = 0; bit<64; bit++) {

uint64_t bit_mask = (uint64_t)1 << bit;

for(uint64_t attempt=0; attempt<ATTEMPTS; attempt++){

flush_cache(p);

run_test_rtm(p, bit_mask, addr);

attempt_times[attempt] = time_access(p);

}

uint64_t min_time = attempt_times[0];

uint64_t probably_one_count = 0;

for(uint64_t i=1; i<ATTEMPTS; i++) {

if(attempt_times[i] < min_time) {

min_time = attempt_times[i];

}

if(attempt_times[i] <= ACCESS_TIME_CACHED) {

probably_one_count++;

}

}

printk(KERN_INFO "bit %2lu: time=%-4lu (%lu/%d)\n",

Julian Simon Rauchberger 58

A. Source Code Listings

bit, min_time, probably_one_count, ATTEMPTS);

[...]

}

Julian Simon Rauchberger 59

List of Figures

3.1. Meltdown attack . 11

7.1. Speculative write attack scenario . 24

10.1. Lazy FPU proof of concept . 46

11.1. Rootkit detection process . 50

Julian Simon Rauchberger 60

List of Tables

9.1. 9 bit shift predictions . 34

9.2. Generic predictor collisions . 35

9.3. Call-ret prediction failures . 36

Julian Simon Rauchberger 61

Bibliography

[1] J. Giovannangeli. (2017, June) Skylake bug: a detective story. https://tech.ahrefs.com/skylake-bug-

a-detective-story-ab1ad2beddcd. (last access: 3.7.2018).

[2] X. Leroy. (2017, July) How i found a bug in intel skylake processors.

http://gallium.inria.fr/blog/intel-skylake-bug/. (last access: 3.7.2018).

[3] I. Corporation. (2018, March) Intel core x-series processor family specification update.

https://www.intel.com/content/www/us/en/products/processors/core/6th-gen-x-series-spec-

update.html. (last access: 4.7.2018).

[4] ——. (2017, November) 6th generation intel processor family specification update.

https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/desktop-

6th-gen-core-family-spec-update.pdf. (last access: 4.7.2018).

[5] C. Domas, “The memory sinkhole - unleashing an x86 design flaw allowing universal privilege

escalation.” BlackHat, Las Vegas, USA, 2015.

[6] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre attacks: Leaking enclave

secrets via speculative execution,” arXiv preprint arXiv:1802.09085, 2018.

[7] J. Horn. (2018, February) Speculative execution, variant 4: speculative store bypass.

https://bugs.chromium.org/p/project-zero/issues/detail?id=1528. (last access: 3.7.2018).

[8] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,

T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in

40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[9] I. Corporation. (2012, April) Intel 64 and ia-32 architectures optimization reference manual.

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-

optimization-manual.pdf. (last access: 4.7.2018).

Julian Simon Rauchberger 62

Bibliography

[10] R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks against kernel space aslr,”

in 2013 IEEE Symposium on Security and Privacy. IEEE, 2013, pp. 191–205.

[11] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch side-channel attacks: Bypass-

ing smap and kernel aslr,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security. ACM, 2016, pp. 368–379.

[12] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address space layout randomization with intel tsx,”

in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.

ACM, 2016, pp. 380–392.

[13] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: the case of aes,” in

Cryptographers’ Track at the RSA Conference. Springer, 2006, pp. 1–20.

[14] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise, l3 cache side-channel

attack.” in USENIX Security Symposium, vol. 1, 2014, pp. 22–25.

[15] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “Armageddon: Cache attacks on

mobile devices.” in USENIX Security Symposium, 2016, pp. 549–564.

[16] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher,

D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown: Reading kernel memory from user space,” in

27th USENIX Security Symposium (USENIX Security 18), 2018.

[17] J. Horn. (2018, January) Reading privileged memory with a side-channel.

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html.

(last access: 3.7.2018).

[18] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard, “Kaslr is dead: long live

kaslr,” in International Symposium on Engineering Secure Software and Systems. Springer, 2017,

pp. 161–176.

[19] I. Corporation, “Intel analysis of speculative execution side channels,” ???, 2018.

[20] L. Wagner. (2018, January) Speculative execution, variant 4: speculative store bypass.

https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/. (last

access: 3.7.2018).

[21] T. Zheng, H. Zhu, and M. Erez, “Sipt: Speculatively indexed, physically tagged caches,” in High

Performance Computer Architecture (HPCA), 2018 IEEE International Symposium on. IEEE,

2018, pp. 118–130.

Julian Simon Rauchberger 63

Bibliography

[22] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, “Malware guard extension: Using

sgx to conceal cache attacks,” in International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment. Springer, 2017, pp. 3–24.

[23] I. Corporation. (2018, May) Intel 64 and ia-32 architectures software developer’s manual.

https://software.intel.com/en-us/articles/intel-sdm. (last access: 4.7.2018).

[24] J. Rauchberger, R. Luh, and S. Schrittwieser, “Longkit-a universal framework for bios/uefi rootkits

in system management mode.” in ICISSP, 2017, pp. 346–353.

[25] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh,

“Safespec: Banishing the spectre of a meltdown with leakage-free speculation,” arXiv preprint

arXiv:1806.05179, 2018.

Julian Simon Rauchberger 64

	1 Introduction
	2 Background
	2.1 Hardware bugs
	2.1.1 Erratum SKZ6
	2.1.2 Erratum HSW136
	2.1.3 The memory sinkhole
	2.1.4 Meltdown and Spectre
	2.1.5 Conclusion

	2.2 Out-of-order execution
	2.2.1 Out-of-order engine
	2.2.2 Speculative execution
	2.2.3 State restoring implementation

	2.3 Cache timing attacks
	2.3.1 Practical attacks
	2.3.2 ARMageddon

	3 Meltdown
	3.1 Vulnerability
	3.2 Impact
	3.3 Meltdown patches

	4 Spectre
	4.1 Variant 1: Bounds check bypass
	4.2 Variant 2: Branch target injection
	4.3 Spectre-NG
	4.4 Impact
	4.4.1 Updating security boundaries

	4.5 Patches
	4.5.1 Retpoline
	4.5.2 Microcode updates

	5 Determining root causes
	5.1 Side-channel leakage from speculative execution
	5.2 Microarchitectural states shared between security contexts
	5.3 Delayed or non-existentent security enforcement
	5.4 Assembly instructions
	5.4.1 PREFETCH
	5.4.2 CLFLUSH
	5.4.3 NON-TEMPORAL hints
	5.4.4 RDTSC

	6 Analyzing the speculative execution context
	6.1 Testing instruction behavior
	6.1.1 Memory read
	6.1.2 Memory write
	6.1.3 Memory execution
	6.1.4 Additional findings

	7 Exploitability of writes in speculative execution
	7.1 Attack scenario example
	7.2 L1 cache access
	7.3 Hyper-Threading
	7.4 Load and Store Buffers
	7.5 Analysis of hardware design
	7.6 Practical tests
	7.7 Conclusion

	8 Impact on other security boundaries
	8.1 Software guard eXtension
	8.2 System Management Mode
	8.3 Conclusion

	9 The return branch predictor
	9.1 Function-based control flow on x86
	9.2 Security relevance
	9.3 Experiments
	9.3.1 Experiment 1: Demonstrating the existence of the RSB
	9.3.2 Experiment 2: Memory location dependencies
	9.3.3 Result 1: RSB length
	9.3.4 Result 2: call-ret path mispredictions
	9.3.5 Analysis
	9.3.6 Experiment 3: Introducing training loops
	9.3.7 Conclusion

	10 Alternative side-channels
	10.1 Defining side-channels
	10.2 Choosing the violation instruction
	10.2.1 Restricted transactional memory

	10.3 Creating test code
	10.4 Performing tests
	10.4.1 Cache hierarchy side-channel
	10.4.2 Timing-based side-channel

	10.5 Lazy FPU bug
	10.5.1 Root cause
	10.5.2 Proof of concept implementation
	10.5.3 Test results
	10.5.4 Countermeasures

	11 Bypassing hardware breakpoints with speculative execution
	11.1 Software breakpoints
	11.2 Hardware breakpoints
	11.3 Implementing a proof of concept

	12 Long-term solutions to speculative execution side-channel attacks
	12.1 Approaches to a solution
	12.1.1 Removal of offending features
	12.1.2 Preventing access to out-of-context information
	12.1.3 Removing the side-channel(s)

	12.2 Combined approach

	13 Conclusion
	A Source Code Listings
	List of Figures
	List of Tables
	References

