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Kurzfassung
Die Ära der Quantencomputer rückt mit großen Schritten näher, denn die Forschung im Bereich der Quan-

tencomputer nimmt rasant zu. Ein Quantencomputer mit ausreichenden q-Bits wird einen großen Einfluss

auf die konventionelle Kryptographie haben und möglicherweise deren Sicherheit durch die Anwendung von

entsprechenden Algorithmen zunichte machen. Deshalb ist die sogenannte Post-Quantum-Kryptographie,

welche ein neuer Bereich der Kryptographie ist, notwendig, um im Zeitalter der Quantencomputer weiter-

hin sicher kommunizierun zu können. Ein solches System existiert noch nicht und deshalb hat das NIST

(National Institute of Standards and Technology) einen Call for Papers angekündigt, um Forscher zu er-

mutigen, ein Kryptosystem zu finden, das Angriffen von Quantencomputern standhalten kann, während

es Schlüsselgrößen mit einer angemessenen Länge und guter mathematischer und rechnerischer Leistung

aufweist. Einer der vielversprechendsten Kandidaten ist der SIDH (Supersingular Isogeny Diffie-Hellman)

mit dem SIKE (Supersingular Isogeny Key Exchange), welche die gewünschten Eigenschaften bieten. Die

Herausforderung beim SIDH/SIKE-Kryptosystem ist eine optimierte Implementierung, welche Schlüssel

und Signaturen so klein wie möglich hält und gleichzeitig die isogenen Berechnungen so schnell wie

möglich durchführt. Dies ist eine schwierige Aufgabe, da viele kleine IoT-Geräte und Smart Gadgets auf

einer reduzierten Version von Java laufen, in der die Leistung und Kompatibilität ziemlich schlecht ist.

Aus diesem Grund versucht diese Arbeit, ein schnelles und optimiertes Basis-Framework für SIDH/SIKE-

Anwendungen in Java zu schaffen. Dies beinhaltet eine vollständige Erklärung des gesamten mathemati-

schen und algorithmischen Konzepts, einschließlich einer SIDH-Implementierung in Sagemath und einer

vollständigen SIDH/SIKE-Implementierung in Java. Jede wichtige Java-Funktion wird ausführlich erläutert

und enthält Optimierungskonzepte, alternative Algorithmen und beschreibt die Rolle der Funktion im ge-

samten SIDH/SIKE-Kryptosystem.

Diese Implementierung wird dann auf ihre Rechengeschwindigkeit hin gemessen, um einen Vergleich zu

ermöglichen und eine Grundlage für andere Implementierungen und zukünftige Optimierungen zu schaffen.

Die gesammelten Informationen werden dann zu einem Sicherheitskonzept zusammengefasst, in dem die

Bedeutung korrekter Berechnungen und der Quantensicherheit verdeutlicht wird. Desweiteren könnte dieses

Basis-Framework auch in anderen isogenen Konzepten wie Authentifizierung verwendet werden.
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Abstract
The era of quantum computers is approaching with great strides, because research in the field of quantum

computers is increasing rapidly. A quantum computer with sufficient q-bits will have a great influence on

conventional cryptography and possibly destroy its security by the application of appropriate algorithms.

Therefore, the so-called post quantum cryptography, which is a new area of cryptography, is necessary to be

able to communicate safely in the age of quantum computers. Such a system does not yet exist and therefore

the NIST (National Institute of Standards and Technology) has announced a Call for Papers to encourage

researchers to find a cryptosystem that can withstand attacks from quantum computers while providing key

sizes with an appropriate length and good mathematical and computational performance. One of the most

promising candidates is the SIDH (Supersingular Isogeny Diffie-Hellman) with the SIKE (Supersingular

Isogeny Key Exchange), which offers the desired properties.

The challenge with the SIDH/SIKE cryptosystem is an optimized implementation that keeps keys and sig-

natures as small as possible while performing isogenic calculations as fast as possible. This is a difficult task

because many small IoT devices and smart gadgets run on a reduced version of Java where performance and

compatibility is quite poor.

For this reason, this bachelor thesis tries to create a fast and optimized basic framework for SIDH/SIKE

applications in Java. This includes a full explanation of the entire mathematical and algorithmic concept,

including a SIDH implementation in Sagemath and a full SIDH/SIKE implementation in Java. Each impor-

tant Java function is explained in detail and includes optimization concepts, alternative algorithms, and the

role of the function in the entire SIDH/SIKE cryptosystem.

This implementation is then measured in terms of its computational speed to enable comparison and provide

a basis for other implementations and future optimizations. The collected information is then combined into

a security concept that explains the importance of correct calculations and quantum security. Furthermore,

this basic framework could also be used in other isogenic concepts such as authentication.
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1 Introduction

1.1 Motivation

Great inventions are the driving force in the digital world and especially important in the field of cryptog-

raphy and theoretical computer architecture. Major innovations were achieved as early as 1970 in the field

of cryptography and 1985 in theoretical computer architecture. On the one hand, there was the invention

of public-key cryptography and, on the other hand, the idea of a new type of computer that uses quantum

mechanics for calculations. Although both technologies are very valuable for our digital lives, their develop-

ment causes them to interact with each other and thus impair their efficiency. Quantum computers are able

to solve some mathematical problems that are not possible to solve for classical linear computers in poly-

nomial time. Unfortunately, all modern public-key cryptography-systems are based on those mathematical

problems. This means, given enough time in development and research, that quantum computers can break

today’s public-key cryptography. Since privacy must be possible and is a key factor in a modern and digitally

thriving world, it is necessary to create a new kind of public key cryptography. It can’t really be estimated

when quantum computers will have a real and practical impact. An estimation would also not be able to

make a statement, since the security of many messages already stored must also be guaranteed. Many secret

data sets and communication records require long-term data security. Since the development and implemen-

tation of new cryptographic systems takes a long time, classical and well-tried methods are often still in use.

One example would be DES cryptography, which is still used on many kinds of digital equipment. For this

reason, there is a need to research and implement many new areas of post-quantum cryptography as quickly

as possible. In this bachelor thesis, a comprehensive guide for implementing one of those post-quantum

primitives is given. It focuses on SIKE, a candidate in NIST’s Post-Quantum competition, that provides

a key-exchange and encapsulation system. However, Supersingular-Isogeny-Elliptic-Curve primitives can

also provide encryption, zero-knowledge proves and authentication schemes. Although compared to other

post-quantum systems, these applications do not seem to be that practical in terms of speed and key-sizes, so

this thesis sticks to the key-exchange. During the creation of this thesis, SIKE advanced to the second round

1



1 Introduction

of this competition. The second round decision will be held during the CRYPTO conference in August

2019. SIKE is the only competitor that can be compared to the most used key-exchange system today, the

Diffie-Hellman key-exchange. Part of this work shows that there may be ways to develop an authentication

scheme that has the performance, capabilities and key sizes to compete with other submissions. The re-

search and implementation of post-quantum secure algorithms for cryptography is therefore one of the most

important topics in modern cryptography and essential for security in the digital world. Social behavior has

changed considerably in recent years. As more and more people reveal private information in social media

and exchange sensitive messages via various digital communication channels such as WhatsApp, Telegram

and similar messengers, it is becoming increasingly important to store this data securely for the future and

protect it from attacks by quantum computers. The number of non-human electronic devices on the internet

will increase sharply in the coming years. These include intelligent IoT systems, autonomous vehicle sys-

tems and smart gadgets. In addition, the internet will be connected to critical infrastructures such as power

plants and water treatment plants, opening up new attack vectors for cybercrime. All these participants rely

more than ever on the security and data protection of modern cryptographic systems. This work aims to ad-

vance the implementation of post quantum systems in the digital world and to achieve a better understanding

of the different processes involved. Many of these post quantum systems have the problem, that developers

lack the know-how about complex mathematical systems and their fast and secure application. The paper

explains the basic problem description of SIKE, gives some historical facts and an overview of the current

state of research. An important part is the detailed description of the mathematics needed to understand

and implement this post quantum algorithm. This is done with the help of Sagemath, as it shows some of

the functions in a simpler programming language and makes them easier to understand, even though it is

a complex mathematical system. After that, the thesis provides the complete code description of the Java

implementation. It shows how to use an external library to speed up calculations, save memory, and remove

Java dependencies. The final part of the paper shows some speed measurements, authentication schemes,

and some security implications of SIDH.

2



1 Introduction

1.2 Structure

Chapter 1 (Introduction): The first chapter shows the motivation, outlines the structure of the work, shows

the methodology and the way the research has started and presents the problem description and the goal of

the work. The emphasis is on comprehensibility and reproducibility, as this is a newer and niche area of

mathematics and information and learning materials are scarce.

Chapter 2 (Historical Facts): The second chapter deals with historical facts and describes the path of cryp-

tography from its beginnings to today’s problems in the digital world and its applications. It also shows the

most important information concerning the early developments of isogenic mathematics up to the state of

the art.

Chapter 3 (Literature Analysis): The literature analysis concentrates on a post-quantum system which

was discussed in the first chapter. This system tries to solve some of today’s problems in cryptography with

new approaches. However, new challenges arise which the current research in cryptography deals with.

Chapter 4 (Mathematical Preliminaries): In this chapter, the most basic mathematical principles for cal-

culating fields and isogenic elliptic curves are presented. These concepts are first described formally and in

mathematical notation. In order to create an increased comprehensibility, there are also examples with texts

to make it accessible also for non-mathematicians. The mathematics described here has been practiced and

taught at university level for centuries, but only in the last century was it associated with cryptography and

the digital world.

Chapter 5 (SIDH-Sage): Sagemath is a math toolkit that contains all the mathematical functions needed

to represent the basic functionality of the SIDH algorithm. With Sage it is possible to create complex fields

and isogenic elliptical curves in a fast way and to represent them in an understandable manner. With this

tool and the basic mathematical knowledge it is easier to understand the complete implementation as well

as the certain algorithms that are needed in the background.

Chapter 6 (Java Huldra Library): Programming with large numbers in Java is not really efficient with

the vanilla Java libraries. Huldra is a third party library that can significantly speed up operations and make

better use of memory. This chapter discusses how and why this works.

3



1 Introduction

Chapter 7 (SIDH/SIKE-Java): The seventh chapter deals with the complete description of SIDH/SIKE to-

gether with the program code in Java. Each part of the code is described in detail. The function of each part

of the code is explained by a description of the algorithms and the program itself. Furthermore it is shown

why it is important how the code was optimized or how further improvements may be possible. Many of

these optimizations are based on scientific work and ideas developed by cryptographers and programmers.

Chapter 8 (Measurements): This chapter deals with the measurement results obtained by the Java imple-

mentation. These results focus primarily on the SIDH algorithm and the rapid calculation of isogenies over

a field of complex numbers.

Chapter 9 (Authentication with isogenies): In addition to key exchanges, there are other principles and

cryptographic methods which are made possible by isogenic and supersingular elliptic curves. In the ninth

chapter two authentication schemes are presented which are based on this idea. The first of those scheme

types is based on SIDH. The second authentication scheme type is based on CSIDH and is called SeaSign.

Chapter 10 (Security): This chapter explains the basic security aspects of SIDH. Various conclusions re-

sulting from different scientific studies are analysed, structured and processed to an accumulated result.

Many of these results contain very recent scientific work, as many researchers are currently addressing the

topic of post quantum cryptography and isogenic mathematics.

Chapter 11 (Conclusion and future prospects): The last chapter gives an outlook on what will happen

in post-quantum cryptography in the coming years. In particular, cryptographic systems based on isogenic

mathematics have great potential and there is still room for improvement in research. These insights and

predictions give rise to new questions and insights that can be solved through research and cryptographic

know-how.
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1.3 Methodology

This thesis is a detailed and comprehensive guide, to understand the principles of SIDH and its implementa-

tion. To achieve this goal, the first chapter explains the principles of algebra and fields. Furthermore, some

modern approaches of mathematics in cryptography are presented in order to better understand quantum

computers and their functioning. This chapter is supported by a factual literature analysis on post-quantum

cryptography and SIDH/SIKE.

After that, the mathematical preliminaries are shown. First, these are explained in a formal way in which the

basic principles are presented, along with some text explanations and graphics. These principles provide a

basis for ensuring that even readers with no knowledge about this field of mathematics can understand them.

The next important thing is to show the complex algorithm in the form of an analysis and description in

Sagemath. Sagemath is a mathematical programming language that makes it easier to represent algorithms

because it includes all the mathematical functions and provides an interface to use them. This should give

the reader a more complete understanding of SIDH before showing the Java implementation.

Because Java does not efficiently calculate large numbers, an additional library is used that is able to perform

these calculations with better performance. This chapter tries to explain why it is used in this implementa-

tion, compares pros and cons, and presents the differences in performance and speed.

The full implementation has been programmed in Java and is based on the mathematical operations on the

NIST round 2 competition implementation. However, it uses more advanced and optimized calculation tech-

niques to ensure that it is also efficient in Java. Implementation optimizations and possible improvements

are not fully completed in the programming area and there are still plenty of opportunities to further improve

performance. The code is broken down into several parts, which are described in detail if necessary and sup-

ported by well-known algorithms. The implementation of the isogenic functions can also serve as a basis or

library for other cryptographic applications. In cryptography, isogenies can also be used to implement other

methods such as authentication procedures or zero knowledge proofs. The last part of this chapter shows

the SIKE encapsulation method, which is used to achieve an acceleration and offers a possibility for a static

key exchange.
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Empiric data on the speed of the code is given as a base for comparison and further improvements and math-

ematical as well as programmatical optimizations. From these results some further insights can be derived

as to how the implementation could work on different platforms and protocols. Since post-quantum cryptog-

raphy will play an important role in the future, it is important to find different interfaces and compatibilities

and provide a framework for further research and development.

Then a complete overview of the SIDH/SIKE security analysis is given. The aim is to show the reader which

factors in isogenic mathematics have an effect on cryptography and therefore play an important role. This

allows certain conclusions to be drawn about security and allows future research and developers to improve

the security of their implementations even further.

In the last part of the paper some conclusions about SIDH/SIKE are given. This also includes considerations

on how post-quantum cryptography can be put into practice and how this field will develop in the future.

The digital world is a flourishing system and must sustain the post-quantum era by using good cryptography

and fast security techniques to outpeform quantum computers.

1.4 Problem description and aim of the work

The combination of quantum computers with sufficient power and their application in mathematical prin-

ciples becomes a growing problem of asymmetric cryptography. Sufficiently large quantum computers are

able to crack these cryptographic procedures in polynomial time, which of course has serious effects on the

digital world and its secure communication. Key exchange and authentication are particularly at risk, as

these cannot be performed so easily with symmetrical primitives. NIST uses a call for papers, in order to

find a candidate for a secure cryptosystem in the post-quantum era. To provide security for the development

of autonomous cars, IoT and cloud computing it is necessary to find suitable candidates that can replace the

existing systems. This raises several questions: How can this be achieved? What method is feasible? What

is the best use-case for different systems?

While this has been in discussion since 2003, there were a lot of ideas that tried to answer these questions,

but none of them were proven to be secure and efficient up to a certain point. One of the candidates is

SIDH, where the discrete logarithm problem is replaced with the problem of finding isogenies between cer-

tain elliptical curves. This provides really good compatibility with modern ECDH or ECDSA and bases its

security on the same ideas, but lacks speed and key-size. Compared to other candidates the SIDH/SIKE
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cryptosystem still has the shortest key-lengths. For this reason, the work shows how this system works from

the ground up, as it can be a challenge to understand and apply the different methods and algorithms without

prior knowledge in isogenic mathematics and everything related to it. The mathematics prove as a challenge

to grasp in the beginning, so tries to ease into the mathematics with descriptions and graphical applications

that try to show the functionality. A lot of background information, historical facts and state-of-the-art se-

curity analysis try to give enough base information to understand the workings of SIDH/SIKE as a whole.

This also shows, that there is still room for improvements and further research. This implicates that the

implementation is still in an ongoing living process to make it more efficient, adapt more principles and fix

several issues that may appear in the future. This work can also be used to show the algorithm to students

at universities and cryptographers, since programmatic and mathematical foundations are given. Although

ongoing research is progressing at a rapid pace, this work attempts to focus on primitives that have been

proven safe and are able to work in the post-quantum era. The security primitives and algorithms are subject

to change and therefore it is important to look for new research and implementations.
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2 Historical facts

2.1 Public-key cryptography

Cryptography is one of the most important fields in computer science and mathematics. It provides all

important principles and primitives such as confidentiality, integrity, authentication and non-repudiation.

These principles are indispensable for data protection and secure communication channels and provide a

digitally secure world that everybody relies on. In modern cryptography there are two different types of

systems, symmetric and asymmetric. Symmetric systems were already known to the ancient Greeks, but

they have two major flaws, which makes today’s use almost unthinkable. The first problem is that the

key distribution is very complex. A modern application would require a lot of computing power and time

to make this key distribution system applicable in practice. Each communication requires n(n−1)
2 keys,

where n is the number of participants. So for twelve people it is necessary to calculate and distribute

66 different keys. This small example already shows the effort behind symmetrical distribution methods

and the associated complexity, which makes them impractical in a real application. The second problem

deals with the distribution of these keys. Transferring them digitally is not an option because interception

of the key would significantly compromise and destroy the security of all data transmission. Direct key

exchange is therefore not secure at all. For centuries, this has been a fundamental problem for the secure

exchange of all kinds of data. However, through research and inventions in computer science, a solution to

this problem was found in the 1970s. The first algorithm that solved the key exchange problem was named

after its inventors, the Diffie-Hellman key exchange. This algorithm was published in 1976 [1]. The main

difference to existing key exchange methods was the use of asymmetric keys. This means that the respective

senders and receivers have different and unique information on the respective side. However, the transmitted

information can only be read with the corresponding asymmetric key. Symmetric crypto-systems always

used primitives like substitution and transposition, but rarely mathematical formulas. This changed with

the invention of the Diffie-Hellman key exchange and later with the invention of the RSA cryptosystem

[2]. In an asymmetric system, public information (public or shared key) and secret information (private or
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secret key) are available for data exchange. Those systems are based on so-called mathematical trapdoor

functions. They are comparatively easy to calculate in one direction, but difficult to reverse if the private

key is partially or completely missing. Asymmetric crypto-systems can also be used for other purposes

than encryption and key exchange. There are different algorithms that utilize this cryptographic method in

authentication schemes and integrity checks. However, there is a disadvantage in asymmetric cryptography.

Since substitution and transposition are easy to calculate for computers, symmetric systems can be calculated

faster than asymmetric systems, which are based on mathematical structures and algorithms. That’s why

the usage of hybrid systems is very popular. These systems encrypt the data with a symmetric key and

distribute this symmetric key with an asymmetric system. So the overall data security relies on the security

of the asymmetric key. Most modern asymmetric cryptosystems use the prime factorization or discrete

logarithm problem in their calculations. If the symmetric key can be cracked, it is possible to read the

original message in plain text. This would lead to major problems with authentication and integrity.

2.2 Quantum-Computers

Richard P. Feynman’s first thoughts on calculating with a "quantum computer" came in 1982, when he asked

himself whether a classical computer could probabilistically simulate quantum systems:

"If you take the computer to be the classical kind I’ve described so far, (not the quantum kind described in

the last section) and there’re no changes in any laws, and there’s no hocus-pocus, the answer is certainly, No!

This is called the hidden-variable problem: it is impossible to represent the results of quantum mechanics

with a classical universal device." [3]

Which means that a quantum-computing-device can simulate quantum-systems and therefore also classical

devices. Conversely, this means that a quantum-computer is universal. Feynman also showed an experiment

with entangled photons and stated that nature is never classical. He said if you want to simulate it, make it

quantum mechanical.

A more technical approach came in the year 1985 from David Deutsch, an Isrealic-British physicist. In his

paper "Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer", he thought

of a Turing machine that can use the laws of quantum physics [4]. Besides inventing the idea of such

Turing machine, he also showed that the Church-Turing principle, first named by Stephen Kleene in 1952

[5], is correct. Turing proofed that the "Entscheidungsproblem", also known as decision problem, was

not solvable. This was stated by Hilbert and Ackerman in 1928 and released in the book "Principles of

Mathematical Logic" 1938 [6]. Turing’s conclusion to formulate the mathematical axioms as a model was
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the well known Turing machine from the year 1936 [7]. In the same year, Alonzo Church, an American

mathematician, formulated his thesis on the λ-calculus [8].

As later shown, they both proved Goedels incompleteness-theorem [9] in different ways. This substantiated,

that abstract mathematical axioms can be deduced into a practical mechanical model. This has the further

implication that a quantum-mechanical calculating device could be practical.With the help of these findings,

Deutsch has been able to create a new field in computer science. The biggest problem at that time was that

nobody knew how such a device could be built or used for mathematical calculations. The first to find a

solution for calculating and programming a quantum computer was Peter Shor in 1995[10]. His algorithm,

later called the Shor-algorithm, showed how to solve the discrete logarithm problem and prime factorization

in polynomial time. By the discovery of the algorithm and its important application, the research and

the knowledge in the field of quantum computation has increased enormously in the last decades. These

successes can also be seen today, such as Google’s Bristlecone, which is a 72-qubit quantum processor.

[11].
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3.1 Post-quantum cryptography

The term post-quantum cryptography was first mentioned by DJB (Daniel J. Bernstein) in 2003. He was the

first to recognize that quantum computers endanger modern public key cryptography, and since then he has

worked hard to advance research in this field, which has produced several new methods for a new category

of cryptography. However, it is not yet known whether these ideas will work in the future and whether post-

quantum cryptography will be able to use these principles. These new mathematical calculation principles

can be divided into five categories, with different cryptographic approaches fitting into different categories.

Research and challenges such as NIST’s post-quantum competition will show how well these different

algorithms will work in practice and in terms of efficiency and security.

3.1.1 Code-based post-quantum cryptography

The idea of code-based cryptography is based on the use of error correction codes. They are usually used

to detect errors in data transmissions and, at best, to correct them. The security is based on the problem of

decoding a random linear code. Even when using quantum computers, only exponential algorithms can be

used since no other algorithms are known yet. The most well-known of these methods was invented in 1978

and is called McEliece. Based on this method there are already several modern implementations [12].

3.1.2 Lattice-based post-quantum cryptography

The basic problem with this post quantum cryptography system is called the "shortest vector problem".

It is a problem of mathematics and computer science which is based on finding the shortest vector in a

high-dimensional lattice. One example is the NTRU public key encryption system [13].
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3.1.3 Hash-based post-quantum cryptography

Hash-based cryptography is very different from code- and lattice-based cryptography. Hash functions are

so-called one-way functions. A hash function needs a set of characters and assign them to a shorter set

with a certain size. Independent of the input length, the resulting hash has always the same length. This

was first invented by Ralph Merkle in [14]. Two other well-known hash-based methods are [15] and [16].

Hash-based signatures rely on the fact that it is not possible to guess the plaintext used as input to the hash

function. Therefore, each function has a different signature scheme. The main problem is that there can

only be 2n signed messages, where n is the maximum size of the Merkle tree.

3.1.4 Multivariate-based post-quantum cryptography

Multivariate post-quantum cryptosystems are based on polynomials, which are calculated over a finite field.

Such systems have proven to be NP-hard or NP-complete and can therefore not be solved in polynomial

time. For this reason, they are considered good candidates for post-quantum cryptography, especially for

signature schemes.

3.1.5 Isogeny-based post-quantum cryptography

In classical cryptography, elliptical curves are often used for security and various other purposes. Mathemat-

ical operations such as point addition and point multiplication are used to create security in cryptographic

applications. Isogenic cryptography is based on this principle, but uses many curves instead of one. An

isogeny is therefore an operation between different curves. The so-called isogenies are functions that cre-

ate mappings and connections between curves and these functions usually have very different properties

that makes a distinction between them possible. The first implementation of a supersingular isogenic cryp-

tosystem was done in 2011 by de Feo, Jao and Pluka [17]. This implementation was called "Supersingular

Isogeny Diffie-Hellman", which is abbreviated to SIDH, and will be referenced as such in the later work. In

the next chapter a more detailed description of this innovative cryptographic system will be given.

3.2 SIDH-SIKE

The first use of isogenies for a cryptographic purpose occurred in 2006 in a contribution by Rostovsev and

Stolbunov[18]. The paper showed some theoretical applications and described how isogenic mathematics
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works in cryptography. Furthermore, a public key encryption method was presented, which used isoge-

nies as a mathematical basis. A security analysis under consideration of some security parameters looked

promising and had the potential to be a good post-quantum cryptography candidate. A more advanced

version, including a complete Diffie-Hellman-scheme was released in 2010 by Stolbunov[18]. The former

fastest classical algorithm was invented by Galbraith and Stolbunov[19]. This algorithm turned out to be

exponential and had a worst case runtime of O( 4
√
q). The downside was, that Stolbunovs Diffie-Hellman

version had two major Problems. First, his cryptographic calculation scheme was very slow and it took

about 230 seconds for a complete key exchange to take place. The second problem was, that the key could

be calculated on quantum computers in polynomial time. This is a much more serious problem in the world

of post quantum systems and was proven by Childs, Jao and Soukharev[20]. The idea of a post-quantum

scheme with isogenic elliptic curves was therefore abandoned in 2010. A year later, in 2011, de Feo, Jao and

Plut showed a new way to use isogens for cryptographic systems and proved this to a scientific work, which

they even revised in 2014[17]. Instead of ordinary elliptic curves they used supersingular isogenic elliptic

curves. Changing the algorithm to this particular curve type solved both the speed problem and the safety

problem Stolbunov had with ordinary isogenic curves. The principles of the scientific article are still the

standard for all systems of supersingular isogenic cryptography and are therefore used as a basis for further

research. The system was renamed SIDH (Supersingular Isogeny Diffie-Hellman) and further progress was

made in the following years. De Feo, Jao, and Plut released an enhanced version of their paper in 2014 [17].

It added a zero-knowledge scheme, better description of the security and a faster algorithm. Also in 2014

Jao and Soukharev showed the first signature-scheme based on isogeny cryptography [21]. A significant

boost came in the year 2016 where Costello [22] released a more efficient algorithm and Galbraith proofed

the security [23] and showed new identification protocols and authentication schemes [24]. In 2017, SIDH

became really practical. First Costello released a paper with further compression on the keys [25] and Jalali

brought up an implementation for the 64-bit ARM architecture [26]. Microsoft had already implemented

SIDH as a full programmed beta library (c and asm) [27]. One of the problems was, that keys were only

ephemeral but never static. A collaboration between researchers and engineers at Amazon, Florida Atlantic

University, Infosec Global, Microsoft Research, Radboud University, Texas Instruments, Université de Ver-

sailles, and the University of Waterloo addressed this problem. This led to a key encapsulation method

which is called SIKE and was introduced in late 2017 [28]. It was submitted to the NIST post-quantum

cryptography-system contest and presented at RealWorldCrypto 2018 [29]. It could be shown, that with

SIKE, the SIDH algorithm is faster than before. In May 2018, a new method of isogeny cryptography was

released. It is called CSIDH and has some improvements to normal SIDH which needs to be investigated in
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the future [30]. In late 2018 and revised in released 2019 Galbraith and De Feo proposed a new signature

scheme based on CSIDH called SeaSign[31]
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This chapter explains basic and advanced mathematics needed to holistically understand the SIDH algorithm

and isogeny-based computations. Most of this knowledge is state of the art and is taught at many universities.

For this reason, there are very few quotes in this chapter. Only special calculations are referenced to the

respective scientific work or book. To read more about mathematics of elliptic curves and SIDH/SIKE, the

book from Silverman [32] and the paper from De Feo [33] can be consulted. In this chapter it should be

possible to get a comprehensive overview of the SIDH/SIKE algorithm. Although the mathematical concept

is very complex, it should be presented in a simpler and more understandable, yet correct form. This is also

the reason why there are simple explanations and supporting graphics for each mathematical description.

4.1 Modular arithmetic

Modular arithmetic is based on whole numbers, and calculated the same way as a division is calculated.

However, as the result, the residue is taken. Modular arithmetic is often used in cryptography, and many

of the modern systems are calculated with it. It functions like a clock that starts and ends with the modulo

number p. It’s the base of understanding how discrete mathematics work.

Example: For the modulo number p 5 is taken and let a be an element of N It can be seen that the five

numbers start all over from the beginning after 5 steps:
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a (mod p)

1 (mod 5) = 1

2 (mod 5) = 2

3 (mod 5) = 3

4 (mod 5) = 4

5 (mod 5) = 0

6 (mod 5) = 1

7 (mod 5) = 2

8 (mod 5) = 3

9 (mod 5) = 4

10 (mod 5) = 0

4.2 Algebraic structures and operations

At first glance, algebraic structures seem very complicated and strange for people who have never heard of

them at school or university. However, their use in mathematics is not difficult to understand. This usage

basically includes everything that is needed for calculations in modern public-key cryptography. They also

form the basis for so-called "discrete mathematics", which works closely with linear algebra and logic.

Therefore these three mathematical areas are really necessary to understand the calculations used in today’s

cryptography. In this chapter the basic elements and principles are defined first, before more complex topics

are addressed. A structure in mathematics means that several mathematical operations and rules are used in

one unit. So each set, no matter what it consists of, can be regarded as a mathematical object, which behaves

in a certain way if the rules are followed. This set can consist of numbers, points or even spins of ions. For

this reason, a set of corresponding numbers and operations can be calculated in the same way as points on a

curve if they are in the same structure.

4.2.1 Basic structure rules

There are a lot of different possible structures. This thesis will only focus on the most important ones. They

are defined by a set of rules, also called the structure axioms, that are applied to them. There are two basic

16



4 Mathematical Preliminaries

rules that apply to every structure. The first rule describes the presence of an identity element in every

structure and second rule describes the existence of an inverse element.

Identity element

a� e = a

The circle stands for any operator. This could be an addition-operator or multiplication-operator.

Example: The identity element e in the set of N is calculated with the addition operator:

a+ e = a

e = a− a

e = 0

This proves, that the identity element in the natural numbers is zero. If we take any given number, like 34

and add 0 to it, it stays at 34. The multiplicative rule works the same way.The next example shows how to

find the identity element e in R with the multiplication as an operator:

a · e = a

e =
a

a

e = 1

In this case, the number 1 is the identity element. On later parts, it is shown, that it is always possible to

find an identity element for the structures used in this papers. They might look different, but the definition

of rules stays the same.
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Inverse element

The second really important rule is, that there is the possibility to find a inverse element for a certain value.

This means the opposite in laymans terms. In mathematics it is just defined as the element that gives the

identity element to a respective element:

a� a−1 = e

Example: In this example the inverse element a−1 in the set of N is calculated with the addition operator,

the identity element with addition stays at zero:

a+ a−1 = e

a−1 = e− a

a−1 = −a

This shows, that the inverse of any number in N should be a negative number. In this case there is no negative

number in N. That shows, that there is no inverse with the addition-operator. So the inverse element rule

does not work in N. In the next example, the set of whole numbers Z is used.

a+ a−1 = e

a−1 = e− a

a−1 = −a

It is the same calculation as in N. With the difference, that there are negative numbers in Z. So for any

number in Z, it is possible to find an inverse. For any number in n Z this inverse is the same negated

number:

7 + 7−1 = 0

7−1 = 0− 7

7−1 = −7

For the subsequent definition of structures, there are additional rules that only apply to the respective struc-

tures. If this is not the case, this structure cannot be referred to as a group or field. The first thing on this

chapter is the fields. They have most of the rules that are applied to them.
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4.2.2 Field

A field in mathematics is defined as a set to which a conglomerate of rules are applied at the sime time.

This means that for example addition, subtraction, multiplication and division are defined and usable. An

example of this are the real numbers R. The classic rules for a set are:

• Associativity (addition and multiplication): a+ (b+ c) = (a+ b) + c and a · (b · c) = (a · b) · c

• Commutativity (addition and multiplication): a+ b = b+ a and a · b = b · a

• Distributivity(multiplication over addition): a · (b+ c) = (a · b) + (a · c)

• Identity element (addition and multiplication)

• Inverse element (addition and multiplication)

• Closure(addition and multiplication): For all a, b in the field also a+ b and a · b have to be defined

Example: This example shows the prove, that elements in R follow all the rules above:

Associativity(addition):

5 + (3 + 6) = (5 + 3) + 6

5 + 9 = 8 + 6

14 = 14

Associativity(multiplication):

5 · (3 · 6) = (5 · 3) · 6

5 · 18 = 15 · 6

90 = 90

Commutativity(addition):

5 + 3 = 3 + 5

8 = 8

Commutativity(multiplication)

5 ∗ 3 = 3 ∗ 5

15 = 15
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Distributivity(multiplication over addition):

5 · (3 + 6) = (5 · 3) + (5 · 6)

5 · 9 = 15 + 30

45 = 45

Identity element(addition):

e = 0

5 + 0 = 5

Identity element(addition):

e = 1

5 ∗ 1 = 5

Inverse element(addition):

5 + (−5) = 0

Inverse element(multiplication):

5 ∗ 1
5
= 1

Closure(addition):

5 + 3 = 8

8 is an element in R

Closure(multiplication):

5 · 3 = 15

15 is an element in R
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4.2.3 Ring

A ring is another type of algebraic structure. It is also an abelian group with the difference, that it has only

two operators applied to it. Some rules for fields don’t apply to a ring and there are many different types of

rings. In this section, only basic rings are mentioned:

• Associativity (addition and multiplication): a+ (b+ c) = (a+ b) + c and a · (b · c) = (a · b) · c

• Distributivity(multiplication over addition): a · (b+ c) = (a · b) + (a · c)

• Identity element (addition and multiplication)

• Inverse element (addition and multiplication)

• Closure(addition and multiplication): For all a, b in the ring also a+ b and a · b have to be defined

Example: This example shows the prove, that elements in Z follow all the rules above:

Associativity(addition):

5 + (3 + 6) = (5 + 3) + 6

5 + 9 = 8 + 6

14 = 14

Associativity(multiplication):

5 · (3 · 6) = (5 · 3) · 6

5 · 18 = 15 · 6

90 = 90

Distributivity(multiplication over addition):

5 · (3 + 6) = (5 · 3) + (5 · 6)

5 · 9 = 15 + 30

45 = 45

Identity element(addition):

e = 0

5 + 0 = 5
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Identity element(addition):

e = 1

5 ∗ 1 = 5

Inverse element(addition):

5 + (−5) = 0

Inverse element(multiplication):

5 ∗ 1
5
= 1

Closure(addition):

5 + 3 = 8

8 is an element in R

Closure(multiplication):

5 · 3 = 15

15 is an element in R
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4.2.4 Group

A group is also a set of elements with the difference, that only one rule applies. Groups are less restrictive,

so forming a group is easier than forming a field. However, we can perform fewer operations on it, which

means that a group is a more restrictive form of a ring and/or field in terms of usage. It can only be used

with a single operation. Groups that always hold commutativity of addition are called abelian groups. The

definition of a basic group is the following:

• Associativity (addition): a+ (b+ c) = (a+ b) + c

• Identity element (addition)

• Inverse element (addition)

• Closure(addition and multiplication): For all a, b in the group also a+ b has to be defined

Example: Here we prove that elements in Z follow all the rules above:

Associativity(addition):

5 + (3 + 6) = (5 + 3) + 6

5 + 9 = 8 + 6

14 = 14

Identity element(addition):

e = 0

5 + 0 = 5

Inverse element(addition):

5 + (−5) = 0

Closure:

5 + 3 = 8

8 is an element in Z

In Z there is no inverse element for multiplication as seen in the following example:
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Inverse element(multiplication):

5 · b = 1

5 =
1

b

Since we know that 1
b is not an element in Z there is no multiplicative inverse. So Z in combination with the

addition-operator forms a group.

4.2.5 Morphisms

A morphism in mathematics is a rational map, that that creates a function from one algebraic structure to

another. This is called a walk. It can be seen as some kind of roads or edges, that connect several structures

in some way. They can be described as a function from source to target. In mathematical notion this can be

written the following way:

f : X 7→ Y

Morphisms can also exist with several rules applied to them:

• Identity: For every X there is a morphism idx : X 7→ X , the so-called identity morphism, which is

the opposite map.

• Associative: a� (b� c) = (a� b)� c

Example: For a source X , f makes a connection to Y . Y has also a connection to Z, called g. This makes

it possible to go directly from X to Z by calculating g � f . The following figure shows this morphism.

Figure 4.1: Morphism from X 7→ Z

X Y

Z
f�g

f

g
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4.2.6 Endomorphism ring

In mathematics, an endomorphism is a morphism to itself. This morphism can be written as End(X)

and serves an important use for special curves in SIKE. The endomorphism of an abelian group forms the

endomorphism ring with a multiplicative identity.

4.2.7 Quadratic residue and non-residue

Quadratic residues are so-called congruence classes which are formed by calculating the modular operation

a 6≡ 0 (mod p) for n numbers. Certain numbers, will yield the same quadratic residue, in which case they

are in the same congruence class. A value of 0 means that the number a is not a quadratic residue and there-

fore called quadratic non-residue. Put simply, this means that when a modulo operation is performed on a

square number, all numbers that remain are a quadratic-residue, and all other numbers that are not generated

by it are non-residues.

This can be mathematically defined with the Legendre-symbol:

(
a

p

)
≡ a

p−1
2 (mod p)

(
a

p

)
=


1, if a is a quadratic residue and a 6≡ 0 (mod p).

0, if a ≡ 0 (mod p).

−1, if a is a quadratic non-residue.
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Example: The legendre notation can also be explained in a normal mathematical notation:

For the following example, the finite field F5 is used:

12 (mod 5) = 1

22 (mod 5) = 4

32 (mod 5) = 4

42 (mod 5) = 1

52 (mod 5) = 0

62 (mod 5) = 1

72 (mod 5) = 4

82 (mod 5) = 4

92 (mod 5) = 1

The example shows that the square residues are 1 and 4 and the non-residues are 2 and 3.

4.3 Finite fields

The Galois fields or more commonly named finite fields, are mathematical field structures that contain a

fixed amount of elements.[34][35]

In number theory, group theory, cryptography and general coding and computing, a finite field is mostly

used as a field of integer numbers modulo a prime number. Although the properties allow the usage of

arbitrary numbers like floating point values or complex numbers.[36]

The main properties of finite fields are[37][35]:

• Every finite fields order is a prime power.

• Every prime number has a finite field with the same number of elements.

• Finite fields with the same number of elements are isomorphic.

• The operations of addition and multiplication are defined over the set.

• In every field exists a multiplicative identity element and an additive identity element.

• Every element has an additive inverse and every element that is not zero has a multiplicative inverse.
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4.3.1 Finite Field Fp

The finite field Fp is used for some underlying calculations in the SIDH-Algorithm and certain isogenic

computations. The mathematical basics are defined by the following key aspects:

• Fp = Zp = {0, 1, ..., p− 1}

• General: a, b ∈ Fp

• Addition: a+ b ≡ r mod p where r ∈ [0, p− 1]

• Multiplication: a ∗ b ≡ r mod p where r ∈ [0, p− 1]

• Additive Inverse: a+ x ≡ 0 mod p where x = −a

• Multiplicative Inverse: ax ≡ 1 mod p where x = a−1

4.3.2 Finite Field Fp2

The finite field Fp2 is an extension of the finite field Fp. The extension is achieved by utilising a primitive

polynomial of degree n.[36]

4.3.3 Polynomials over a field

Polynomials are equations that have the following form:

f(x) = a0 + a1x+ ...+ anx
n

When taking a field (F,+, ·), the coefficients a0, a1... have to be in this field. If a finite field is used

for this, the solutions for the field polynomial are also finite. Some of these polynomials can be irreducible

polynomials, which means that they cannot be incorporated into a product of two non-constant polynomials.

Primitive polynomials are always irreducible and must consist of a constant nonzero term. They act like

primitive roots and can be used as a generator called a "generator polynomial".

For the next example, the finite field F3 is used, so the possible coefficients are 1,2 and 3. The polynomial

could be f(x) = a0 + a1 + a2 and the solutions to it are:

f(x1) = 10 + 11 + 13

f(x2) = 10 + 21 + 13

f(x3) = 10 + 21 + 23

f(x4) = 20 + 21 + 33

...
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The function above showcases our natural numbers that we use for calculation on a daily basis. The number

489 can be written as 4 · 103 + 8 · 102 + 9 · 101 in polynomial form.

4.4 Elliptic curves

The aforementioned examples, were all calculated in modular arithmetic. But there is also another group

which is important for cryptography. It is based on points of an elliptic curve over a finite field. In the next

example, a special polynomial is given over a finite field:

y2 = x3 +Ax+B (mod p)

The solution to this polynomial returns points in an n-dimensional space, depending on what kind of field

is used for the coefficients. One important rule is, that A3 + 27B2 6= 0 (mod p). Following this rule is

important to ensure, that x3 + Ax + B = 0 (mod p) has no repeated roots. In Fp there are only natural

numbers, so the space is 2-dimensional. In the case of Fp2 , complex numbers are used and the projection

space is 4-dimensional. To form an algebraic structure for calculations, the axioms have to be proven. In

this case, the identity-element is a point at infinity, written as O and the inverse of it is the opposite point

on the other end of the field. It is proven, that addition and multiplication with points on elliptic curves are

also feasible. So points on elliptic curves over a finite field can be used in the same way as normal integer

addition and multiplication. That’s why it is possible to use cryptographic protocols like the Diffie-Hellman

key-exchange with elliptic curves in the same way as it is possible with normal numbers.

Example of an elliptic curve: For the standard elliptic curve polynomial, the finite field F13, with the co-

efficients a = 1 and b = 0 is used:
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Figure 4.2: Points on elliptic curve over F13[38]

4.4.1 Supersingular elliptic curves

Elliptic curves are divided into two basic types:

• Ordinary elliptic curve used for ECDH or ECDSA

• Supersingular elliptic curve used in SIDH/SIKE

The main difference between them is, that a supersingular curve forms a really large endomorphism ring.

The term "supersingular" is not related to the singularity of points or that the curve itself is somehow

unique/singular. It is called supersingular, because the j-invariant of the curve has a singular value, which is

important for the SIDH/SIKE algorithm in order to calculate the shared/secret key.

4.4.2 Montgomery curves

The Montgomery curve is a form of an elliptic curve, that differs from the normal Weierstrass form. How-

ever, every elliptic curve could be written in Weierstrass or Montgomery form. The basic notation is:

By2 = x3 +Ax2 + x

The notation above is often used in cryptography, because there is a remarkably speed up in calculation

time and performance in certain programs. The reason for this is, that there are also different mathematical

notations for mathematical operations on Montgomery curves.
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4.4.3 Torsion

A Torsion group includes all elements g in a group and a natural number n that satisfies the equation gn = 0

or g ·n = 1. Torsion points or division points are points of algebraic variety, which are computed as division

polynomials. In SIDH/SIKE the torsion groups are building the kernel of the isogenies.

4.4.4 Twists

In algebraic geometry, any elliptic curve over a field has a quadratic twist. This could be another curve,

which is is isomorphic to the first one. An isomorphism between elliptic curves with degree 1, is called an

isogeny that is invertible. There can be twists of higher order and they both have the same j-invariant. (more

on isogenies->verweis)

4.4.5 Point at Infinity

The point at infinity(O) is a point that is used to get the projective completion. In an elliptic curve it is the

identity element. So a point and its inverse point add up to the point at infinity.

4.5 Mathematics of Montgomery curves

4.5.1 Point addition

Given two points P (xP , yP ), Q(xQ, yQ) where P 6= ±Q the point addition on a Montgomery curve EA,B

and A,B ∈ Fp is done by computing λ, xR and yR. The point addition is also important for calculating the

order of a point which is known as ord(P ) in mathematical terms.[39]

Equation for λ which is needed in the addition:

λ =
(yP − yQ)
(xP − xQ)

With λ the new Point R(xR, yR) = P +Q can be calculated with the following equations:

xR = Bλ2 − (xP + xQ)−A

yR = λ(xP − xR)− yP

The order of a point can be calculated by adding a point P to itself for n times. The order is the smallest

amount that a point can be added to itself before reaching the point at infinity(O). The order is important to
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differentiate all curve points into different classes. This can be used to optimize certain computations and

filter out points that are unable to work with the SIDH algorithm.

P + P + ...+ P︸ ︷︷ ︸ _n = [n]P until [n]P = O

4.5.2 Point doubling

The second primitive point operation is the point doubling. It takes advantage of a point whose order does

not divide 2. It is essentially the same as adding a point to itself with the main difference, that it only

needs the values of xP and A in the calculation. This leaves room for speed and performance optimizations

compared to the ordinary point addition. Furthermore, the performance is even better when computing in the

finite field Fp2 which is taking advantage of fewer variables and less memory allocations while calculating

with complex numbers.[39]

For P = (xP , yP ) ∈ (EA,B ∧ ord(P ) mod 2 6= 0) the doubled point [2]P = (x[2]P ], y[2]P ]) can be

calculated with:

(x[2]P ], y[2]P ]) =

(
(x2P − 1)2

4xP (x2P +AxP + 1)
, yP ∗

(x2P − 1)(x4P + 2Ax3P + 6x2P + 2xP + 1)

8x2P (x
2
P +AxP + 1)2

)

4.5.3 Point tripling

The third primitive point operation is the point tripling method. It takes advantage of a point whose or-

der does not divide 3. For P = (xP , yP ) ∈ (EA,B ∧ ord(P ) mod 3 6= 0) the doubled point [3]P =

(x[3]P ], y[3]P ]) can be calculated with[39]:

(x[3]P ]) =
(x4P − 4AxP − 6x2P − 3)2xP
(4x3P + 3x4P + 6x2P − 1)2

(y[3]P ]) =
(x4P − 4AxP − 6x2P − 3)(x8P + 4Ax7P + 28x6P + 28Ax5P + (16A26)x4P + 28Ax3P + 28x2P + 4AxP + 1)

(4Ax3P + 3x4P + 6x2P − 1)3

4.5.4 j-invariant

The j-function plays an important role in the mathematics of supersingular elliptic curves and their functions.

It is a basic module function, which is used for many applications in SIKE and comparable cryptographic

applications. The j-invariant produces a certain value that describes the uniqueness of a curve up to isomor-

phism. This value is calculated by taking A from (EA,B and executing the following function[39]:

j(EA,B) =
256(A2 − 3)3

A2 − 4
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4.5.5 Montgomery ladder

The Montgomery ladder has been proposed by Peter L. Montgomery in the year 1987 [40]. This ladder tries

to compute point multiplications in a fixed amount of time. It can basically removes side-channel attacks

from any algorithm, because it calculates the same number of point additions, independent of the value of

the multiplicand d.

4.6 Isogenies

In general algebraic geometry an isogeny is a rational map between two abelian varieties, where the degree

of an isogeny, is the number of elements in its kernel. It is a morphism, more precisely, an isomorphism, that

connects an elliptic curve to another curve, and also preserves the identity. They are called isomorphic if the

j-invariant of the curves are the same. Endomorphism and Isomorphism are just special cases of isogenies.

The degree `+1 specifies how many curves are connected to a base curve. So an isogeny with degree 3 has

4 other curves connected to it. This is one of the most important features of SIDH/SIKE, because safety is

based on the difficulty of calculating these isogenies. This means that the "path" is known when the torsion

points are not known. The kernel points of the torsion subgroup has a degree, which is an endomorphism.

So a degree 3 torsion subgroup in its respective kernel means, that by adding itself together three times leads

back to itself.

4.7 Isogenic calculations on elliptic curves

The following picture shows a complete isogeny calculation over an elliptic curve. With complex numbers

in F112 , there are 4 torsion subgroups that build the kernel. From there on the isogeny function is calculated

and generates the map to go from E to E2

4.8 Graph theory

Graphs are basic objects in mathematics. They consist of nodes or vertices and edges or connections. They

can display a path from one node via an edge to another node. There are directional and non-directional

graphs. These are very important for discrete mathematics and computer science. Examples are binary

trees or the map of hyperlinks in a website. Graphs are also directly linked to algebra and for this reason

they can also be used together with algebraic structures. An example of this is the SIDH/SIKE, which uses

elliptical curves as edges and represents the isogeny between the curves using graphs. Each curve has `+ 1
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Figure 4.3: Isogenic calculation over F112[41]

edges or links to other curves in the field. The first use in computer science for isogeny calculations was a

hash function. This means that you want to avoid collisions with graphs because it is really unlikely to take

completely identical paths in a graph[42]. 4.4 shows an isogenic diagram with degree 2 and 4.5 shows an

isogenic diagram with degree 3.[41]
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Figure 4.4: Isogenic graph with degree 2[41]

Figure 4.5: Isogenic graph with degree 3[41]
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Sagemath is a mathematical calculation tool that provides a mathematical programming language with an

interface. The main advantages are that this tool provides the ability to implement, analyze and learn com-

plex algorithms without having to worry about the underlying instructions and routines. This makes it much

easier to create programming templates and troubleshoot algorithms. The main advantage that Sagemath

offers for this work is that the isogenic computations and the complex finite field mathematics are fully im-

plemented and ready to use. This is a significant help in understanding this complex topic. For this reason,

the following chapter explains the complete SIDH algorithm in detail and provides background information

and explanations on certain algorithms.

The main mathematical concepts, that Sage provides for this thesis are:

• Elliptic curves

• Finite fields and prime number computations

• Supersingular point operations

• Isogenies and j-invariants

• Codomains

• Kernels

• Random number and random point functions

• Graphs
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5.1 Graphical display of the SIDH-Algorithm

The following graphic is the complete SIDH-Algorithm in a mathematical notation. Every step, starting

from the finite field generation to the comparison of the shared secret is explained in code and described

in detail. This provides a good basis to further understand the Sage code and the full implementation in Java.

Alice
E/Fp

PA, QA, PB , QB ∈ E
Bob

mA, nA ∈ Z

R = mA ∗ PA + nA ∗QA

ϕ : E
R−→ EA

EA, ϕ(PB), ϕ(QB)

mB, nB ∈ Z

R = mB ∗ PB + nB ∗QB

ϕ : E
R−→ EB

EB, ϕ(PA), ϕ(QA)

EB, ϕ(PA), ϕ(QA) EA, ϕ(PB), ϕ(QB)

RBA = mA ∗ ϕ(PA) + nA ∗ ϕ(QA)

ϕ : EB
RBA−−−→ EBA

RAB = mB ∗ ϕ(PB) + nB ∗ ϕ(QB)

ϕ : EA
RAB−−−→ EAB

j(EBA) = j(EAB)
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5.2 Implementation in Sagemath

Listing 5.1: SIDH parameter setup[43]

1 sage: nA, nB = 2, 3

2 sage: eA, eB = 3, 4

3 sage: p = nA ^ eA * nB ^ eB -1

4 sage: p.is_prime()

5 True

6 sage: p % 4 == 3

7 True

8 sage: f = GF(p)

9 sage: f

10 Finite Field of size 647

11 sage: E = EllipticCurve(f, [1,0])

12 sage: E

13 Elliptic Curve defined by y^2 = x^3 + x over Finite Field of size 647

14 sage: E.is_supersingular()

15 True

16 sage: E.count_points()

17 648

Listing 5.1 shows the parameter setup that needs to be done in order to calculate the supersingular elliptic

curve isogeny Diffie-Hellman. A prime number according to the following criteria needs to be chosen:

• p = nA
eA ∗ nBeB − 1

• p mod 4 = 3

When the prime number is set up correctly, a galois field can be constructed. This is used to create a

supersingular elliptic curve over a finite field. With the sage-functions is_supersingular() and count_points()

the supersingularity and the amount of curve points on the elliptic curve can be checked.
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Listing 5.2: Random public points generation

1 sage: points = []

2 sage: while len(points) != 4:

3 ....: p = E.random_point()

4 ....: if p not in points:

5 ....: points.append(p)

6 ....:

7 sage: pA, pB, qA, qB = points

8 sage: pA, pB, qA, qB

9 ((72 : 646 : 1), (66 : 335 : 1), (314 : 364 : 1), (474 : 165 : 1))

In listing 5.2 four public points are chosen. Each party needs two points for the later calculations. In

SageMath this can be done with a loop which iterates all curve points and chooses four random elements

through this procedure.

Listing 5.3: Alice isogeny generation[44][45]

1 sage: mA, nA = 104, 225

2 sage: rA = mA * pA + nA * qA

3 sage: rA

4 (507 : 340 : 1)

5 sage: phiA = E.isogeny(rA)

6 sage: phiA

7 Isogeny of degree 81 from Elliptic Curve defined by y^2 = x^3 + x over

Finite Field of size 647 to Elliptic Curve defined by y^2 = x^3 + 81*x

+ 247 over Finite Field of size 647

8 sage: E_A = phiA.codomain()

9 sage: E_A

10 Elliptic Curve defined by y^2 = x^3 + 81*x + 247 over Finite Field of size

647

11 sage: E.is_isogenous(E_A)

12 True

13 sage: phiA_pB, phiA_qB = phiA(pB), phiA(qB)

14 sage: phiA_pB

15 (567 : 590 : 1)

16 sage: phiA_qB

17 (99 : 212 : 1)

Alice now chooses two random integer numbers that are then used to calculate a new random point with

point arithmetics as shown in listing 5.3. The new point RA does not lie on the curve E which was used

to sample the other four public points. This is where the so-called isogeny needs to be calculated.[46] An

isogeny is a map between two curves that maps a point on one curve to a point on another curve. In this
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example it is done via the SageMath function isogeny(). The result of this function is an isogeny of a cer-

tain degree that maps E to a new curve EA. The curve EA is defined by the codomain of the isogeny.[33]

By using the isogeny, Alice calculates the isogenous points PB and QB , which are Bob’s public points, into

EA. These points are then called ϕPB
and ϕQB

. With the function is_isogenous() the isogenous characteris-

tic of two corresponding curves can be checked. EA, ϕPB
, ϕQB

are then sent over to Bob for further SIDH

calculations.

Listing 5.4: Bob isogeny generation[44][45]

1 sage: mB, nB = 112, 325

2 sage: rB = mB * pB + nB * qB

3 sage: rB

4 (642 : 556 : 1)

5 sage: phiB = E.isogeny(rB)

6 sage: phiB

7 Isogeny of degree 108 from Elliptic Curve defined by y^2 = x^3 + x over

Finite Field of size 647 to Elliptic Curve defined by y^2 = x^3 + 309*x

+ 597 over Finite Field of size 647

8 sage: E_B = phiB.codomain()

9 sage: E_B

10 Elliptic Curve defined by y^2 = x^3 + 309*x + 597 over Finite Field of

size 647

11 sage: E.is_isogenous(E_B)

12 True

13 sage: phiB_pA, phiB_qA = phiB(pA), phiB(qA)

14 sage: phiB_pA, phiB_qA

15 ((124 : 72 : 1), (0 : 1 : 0))

Bob’s isogeny calculation in listing 5.4 is the same as the isogeny calculation done by Alice in listing 5.3.

The only difference is that Bob chooses his own random integer values for the point calculation. Afterwards

he sends C to Alice.[33]
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Listing 5.5: Alice secret point calculation[44][43]

1 sage: secretB_A = mA * phiB_pA + nA * phiB_qA

2 sage: secretB_A

3 (124 : 575 : 1)

4 sage: phiB_A = E_B.isogeny(secretB_A)

5 sage: phiB_A

6 Isogeny of degree 3 from Elliptic Curve defined by y^2 = x^3 + 309*x + 597

over Finite Field of size 647 to Elliptic Curve defined by y^2 = x^3 +

485*x over Finite Field of size 647

7 sage: secretA = phiB_A.codomain().j_invariant()

8 sage: secretA

9 434

With the just exchanged values EA, ϕPB
, ϕQB

Alice now performs another round of isogeny calculations.

In listing 5.5 Alice creates a new secret point with her private integer values and the two points that she has

just received from Bob. The new point is then used to compute an isogeny from the elliptic curve EB . The

j-invariant of the isogeny codomain is the shared secret of both parties.

Listing 5.6: Bob secret point calculation[44][43]

1 sage: secretA_B = mB * phiA_pB + nB * phiA_qB

2 sage: secretA_B

3 (99 : 212 : 1)

4 sage: phiA_B = E_A.isogeny(secretA_B)

5 sage: phiA_B

6 Isogeny of degree 4 from Elliptic Curve defined by y^2 = x^3 + 81*x + 247

over Finite Field of size 647 to Elliptic Curve defined by y^2 = x^3 +

485*x over Finite Field of size 647

7 sage: secretB=phiA_B.codomain().j_invariant()

8 sage: secretB

9 434

Bob does the same calculations as Alice with his own private values. When everything is done he should

end up with an isomorphic curve that has the same j-invariant as the curve Alice calculated.

Listing 5.7: Same j-invariant values for both parties

1 sage: secretA == secretB

2 True

The final check in listing 5.7 shows that both secret values are the same and that the SIDH algorithm has

worked successfully. The j-invariant can now be used as the private shared secret in further communica-

tions.
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The Huldra-Library is a faster alternative to the classical Java internal BigInteger class. BigInteger usually

provides the capability to calculate Integer values with arbitrary bit-length. Although the BigInteger class

provides a good basis, it is not optimized nor intended to use for cryptographic applications. The main

difference between the BigInt class from the Huldra-Library and the BigInteger class from Java is the dif-

ferent usage of fast computation methods and algorithms, as well as accessibility and fast data and object

storage.[47][48][49]

6.1 Immutable vs. Mutable Objects

Mutability and Immutability is a very controversial topic in Java programs. The coding style differs a lot for

each way of allocating objects and it depends on the programmer, the wanted speed and the computational

complexity to decide whats better for the overall programming scheme.

A mutable object is a object that can be directly used by its own mathematical operations and stores the

result by overwriting existing values.[50]

BigInt value1 = new BigInt("1");

BigInt value2 = new BigInt("2");

value1.add(value2);

In the example above, a mutable BigInt object named value1 was created. A second BigInt object named

value2 was also created and then added to value1. The add function now takes the object value2 and adds

it to value1 internally. The result is directly stored in value1. This means that no intermediate object had to

be created and the operational and memory overhead is kept to a minimum.[47]
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This is a huge difference to immutable objects. Immutability means, that during a mathematical operation,

the object can’t be changed. The impact of this property is, that the result of an addition can’t be directly

saved back to the object.[48]

BigInteger value1 = new BigInteger("1");

BigInteger value2 = new BigInteger("2");

BigInteger value3 = value1.add(value2);

In the example above, an immutable BigInteger object named value1 was created. A second BigInteger

object named value2 was also created and then added to value1. Because the immutable object can’t be

changed directly and is returned to the calling function. This is why a new BigInteger object value3 needs

to be created to hold the sum of value1 and value2.
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6.2 Performance

The performance is mainly demonstrated by the BigInt mutable property of the Huldra library. Any value

that is created while computing mathematical operations can be directly saved back into the object and do

not need to be stored in new objects. This provides a great advantage for IOT devices and smart cards in

particular, as it allows limited resources to be used efficiently. Because BigInteger is immutable, a new

object must be created and assigned for each cached result during the execution of calculations. For longer

calculations such as multiplications or divisions, this could create a massive performance impact. BigInt

from the Huldra library, on the other hand, performs the operation directly on the internal array used to store

the digits. All digits are stored in base 2 and are defined by a value that determines the number length.

BigInt stores and extends the array when it no longer has capacity. This function can theoratically compared

to the java-internal ArrayList.[47]

Table 6.1: Performance benchmark BigInteger vs. BigInt

BigInteger Huldra-Library BigInt

Addition 1.840s 0.832s

Subtraction 1.287s 0.574s

Multiplication 0.714s 0.479s

Many small multiplications 0.852s 0.413s

Big multiplications 0.279 0.129

Division 2.608s 2.069s

The direct benchmark comparison in 6.1 shows the real advantage of using the external BigInt Library in-

stead of the native BigInteger class. The benchmark was done with an Intel i7 6700HQ 2.6 GHz processor

with four processing cores. The following mathematical operations have been tested:

• Addition: Adding two 100.000-digit numbers 100.000 times

• Subtraction: Subtracting two 100.000-digit numbers 100.000 times

• Multiplication: Multiplication of a 300-digit number 1000 times

• Many small multiplications: Calculation of 50.000 factorial

• Big multiplication: Multiplication of two 500.000-digit numbers

• Division: Divide two 400.000-digit numbers 1000 times
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The loop values have been exaggerated to provide readable results in the range of seconds. This is not

comparable to a SIKE computation because the loop values are lot shorter, but provide a good preview into

the future when more quantum security is needed or algorithms do a lot more iterations. For example more

iterations in the SIKE Montgomery ladder and more isogenic calculations.

6.3 BigInt mathematical operation examples

In the following section there are some short examples of the functionality of the BigInt class.

The addition consits of multiple functions with the two most important ones being uadd and uaddMag.

These two handle the actual addition while realloc handles changes in the memory size and expands it if

needed.

uadd, which stands for for unsigned add, first checks if the value that needs to be added is positive. When

this is not the case, the function calls the subtraction with usubMag. Otherwise it calls the uaddMag function

that includes the addition.

It is important to note, that the variable a is not the the actual value that needs to be added, but the repre-

sentative magnitude of the value. This magnitude was already calculated when defining a BigInt object and

always represents any value stored in such an object. This is why only a BigInt can be added to another

BigInt object and no intercompatibility is given.

/*

* Adds an unsigned int to this number.

*

* @param a The amount to add (treated as unsigned).

* @complexity O(n)

* @amortized O(1)

*/

public void uadd(final int a){

if(sign<0){

if(len>1 || (dig[0] AND mask)>(a AND mask)){

usubMag(a);

return;

}
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sign = 1;

dig[0] = a-dig[0];

return;

}

uaddMag(a);

}

The uaddMag adds the correct magnitude to the existing value. This means that it first checks the new size

and correctly allocates memory. Afterwards it increases the array represented by dig and correctly moves

over the carry bit. If it reaches a certain size while increasing the value, the realloc function is called on

demand. The function itself does not have any return operators because BigInt is mutable and changes itself

to represent the actual value.

private void uaddMag(final long a){

if(dig.length<=2){

realloc(3);

len = 2;

}

final long ah = a>>>32, al = a AND mask;

long carry = (dig[0] AND mask) + al;

dig[0] = (int)carry;

carry >>>= 32;

carry = (dig[1] AND mask) + ah + carry;

dig[1] = (int)carry;

if((carry>>32)!=0){

int i = 2;

for(; i<len AND ++dig[i]==0; i++);

if(i==len){

if(len==dig.length){

realloc();

dig[len++] = 1;

}

}

}else if(len==2 AND dig[1]==0){

--len;

}

}
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7.1 The SIDH/SIKE implementation

This chapter shows and describes the complete implementation of SIDH/SIKE in Java. The mathematical

and programmatic purpose of each class is described in great detail and attempts to serve as a basic frame-

work and guide for future implementations. Each class has different main functionalities, which are shown

first. At the end of each class, generic functions and class attributes are described. The end of the chapter

deals with the main engine class of SIDH/SIKE and shows how the cryptosystem works in general.

7.2 Finite Field Fp class implementation

The Finite Field Fp class implementation is the base class for all numeric values in the cryptosystem. The

class itself is based on the BigInt implementation of the Huldra-Library as described in chapter 6.

7.2.1 Implementation of the Tonelli-Shanks square root algorithm in Fp

The Tonelli-Shanks algorithm[51] is a fast way to compute a square root in a finite field using modular arith-

metics. The speed of the algorithm depends on the amount of quadratic non-residues and quadratic residues

while computing the square root.[52]

public void sqrt(){

if(value.equals(Engine.ZERO)){

value = Engine.ZERO.copy();

return;

}

if(!isQuadraticResidue()){

value = null;

return;

}
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The algorithm first checks if the value is already zero or the value is not a quadratic residue of the finite

fields prime, which would lead to an immediate return of the algorithm. If the number is not a quadratic

residue, the program stops with an error.[51]

BigInt q = Engine.PRIME.copy();

q.sub(Engine.ONE);

int s = numPowersOf2(q);

q.shiftRight(s);

Fp z = quadraticNonResidue();

BigInt exp = q.copy();

exp.add(Engine.ONE);

exp.shiftRight(1);

In the next part of the algorithm the setup for the calculation loop needs to be done. s equals the the number

of times 2 divides q which is the finite field prime number subtracted by 1. After that, q is being bit-shifted

to the right by s, which in mathematical terms is the division by 2s. The variable z is a random quadratic

non-residue in Fp. It is important to note, that half of all elements in this set will be quadratic non-residues.

The search for a quadratic non-residue will be explained in the implementation in the quadratic non-residue

function. The value exp is the original prime q + 1 divided by two. Everything will be calculated in the

modular arithmetic field.

z.pow(q);

Fp t = copy();

Fp r = copy();

t.pow(q);

r.pow(exp);

int i;

while(!t.equals(Engine.FPONE)){

i = t.findLog2Order();

exp = Engine.ONE.copy();

exp.shiftLeft(s-i-1);

z.pow(exp);

s = i;

r.mult(z);

z.square();
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t.mult(z);

}

value = r.getValue();

}

The last part of the Tonelli-Shanks algorithm consists of the setup the the variables z = zq, t =valuep,

r =valueexp.The loop runs until t equals 1. When that happens, the square root will be in the variable r. i

equals to the binary log order of t in every iteration of the loop.This also adjusts the exponent of z = zexp

which is used in the multiplication of r = r ∗ z and t = t ∗ z until t ≡ 1 mod p.[52]

7.2.2 Implementation of the quadratic residue function in the finite field Fp

private boolean isQuadraticResidue(){

BigInt p = Engine.PRIME.copy();

Fp base = copy();

p.sub(Engine.ONE);

p.shiftRight(1);

base.pow(p);

if(base.equals(Engine.FPONE)){

return true;

}

return false;

}

The quadratic residue function checks if a value is a quadratic residue of the prime p in the finite field Fp[53].

This function can be explained with the Legendre symbol
(
a
p

)
.[54](

a

p

)
≡ a

p−1
2 (mod p)

(
a

p

)
=


1, if a is a quadratic residue and a 6≡ 0 (mod p).

0, if a ≡ 0 (mod p).

−1, if a is a quadratic non-residue.

The function will return 1(true) if a is a quadratic residue and a 6≡ 0 (mod p). Otherwise it will return

0(false) for the other two cases, since they do not need to be differentiated in the SIDH-Algorithm.[55]
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7.2.3 Implementation of the quadratic non-residue function in the finite field Fp

private Fp quadraticNonResidue(){

Fp z;

do{

z = new Fp(Engine.genRandom());

}while(z.equals(Engine.FPZERO) || z.isQuadraticResidue());

return z;

}

In the SIDH-Algorithm some functions like the square root of a number in the finite field Fp need a quadratic

non-residue value for further calculations. The quadratic non-residue function generates secure random val-

ues in the finite field Fp and checks if the generated value meets the criteria by utilizing the aforementioned

quadratic residue function. Although this is a function that utilizes a random value, which means that the

positive outcome of this function is also random, it produces a correct residue quite fast because half the

field consists of quadratic non-residue values.[53][56]

The main downside of this implementation is the usage of the Java proprietary SecureRandom class and the

genRandom() function which is further described in the Engine class implementation. This random gener-

ation needs to be changed depending on the underlying system on which this implementation is going to

run on. For example, a Java smart card needs to use builtin pseudo-random number generators within the

genRandom() function.[57][58]

7.2.4 Implementation of the pow function in the finite field Fp

public void pow(BigInt exp){

BigInt e = exp.copy();

Fp base = copy();

value = Engine.ONE.copy();

while(e.compareTo(Engine.ZERO) == 1){

if(e.testBit(0)){

mult(base);

}

e.shiftRight(1);

base.square();

}

}

The pow function utilizes the so-called exponentiation by squaring algorithm, which is a common method
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for fast computation of large numbers. This algorithm is much faster than multiplying a value with itself

n-times[59]. The mathematical notation of this recursive algorithm is the following:

(xn) =


x(x2)

n−1
2 , if n is odd.

(x2)
n
2 , if n is even.

7.2.5 Implementation of the power-of-2 amount function in the finite field Fp

private int numPowersOf2(BigInt n){

int s = 0;

BigInt q = n.copy();

while(!q.testBit(0)){

s++;

q.shiftRight(1);

}

return s;

}

This function the returns an integer value which is equal to the number of 0 ∗ 2n-bits that have been set in

this number. The loop iterates itself while the value is an even value.

7.2.6 Implementation of the binary logarithmic order function in the finite field Fp

private int findLog2Order(){

Fp tsq = copy();

int i = 0;

while(!tsq.equals(Engine.FPONE)){

i++;

tsq.square();

}

return i;

}

The log2Order makes use of the Fp square root function by recursively using it on the same number until it

reaches the value 1. Each iteration of the loop increases an integer counter which is returned after the loop

is finished.[60]
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7.2.7 Implementation of a fast multiplicative inverse function in the finite field Fp

The multiplicative inverse is besides the isogenic calculations, one of the most important function in the

SIDH-Algorithm. Because this function is widely used in the underlying mathematical construct, perfor-

mance and time optimizations are a critical factor for the complete SIDH runtime.[61][62]

The algorithm below is the also known as right-shift algorithm or Penk’s algorithm that computes a modular

inverse. Some performance optimization have been made to the Penk’s algorithm to achieve a faster and

easier hardware implementation. Although this is the Java implementation, it also takes advantage of a faster

and lower performance demanding code.[61][63]

public void multiplicativeInverse(){

BigInt u = Engine.PRIME.copy();

BigInt v = value.copy();

BigInt r = Engine.ZERO.copy();

BigInt s = Engine.ONE.copy();

BigInt k = Engine.ZERO.copy();

The first part of the right-shift algorithm is the setup of all variables. u is allocated with the SIDH prime

number. It will gradually right shift until it reaches zero. v is the starting value that needs to be inverted. r

holds the intermediate and final value of the right-shift algorithm. s is used only for intermediate calcula-

tions. k will hold the number of right-shifts after each loop trough the extended euclidean algorithm.[61]

while(v.compareTo(Engine.ZERO) == 1){

if(!u.testBit(0)){

if(!r.testBit(0)){

u.shiftRight(1);

r.shiftRight(1);

k.add(1);

}else{

u.shiftRight(1);

r.add(Engine.PRIME);

r.shiftRight(1);

k.add(1);

}

}else if(!v.testBit(0)){

if(!s.testBit(0)){

v.shiftRight(1);

s.shiftRight(1);
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k.add(1);

}else{

v.shiftRight(1);

s.add(Engine.PRIME);

s.shiftRight(1);

k.add(1);

}

The next part of the algorithm continuously right-shifts both values u and v which are even and odd. If the

value is odd, the prime number(which is odd) is added first.

}else{

BigInt x = u.copy();

x.sub(v);

if(x.compareTo(Engine.ZERO) == 1){

u = x.copy();

r.sub(s);

if(r.compareTo(Engine.ZERO) == -1){

r.add(Engine.PRIME);

}

}else{

v = x.copy();

v.mul(-1);

s.sub(r);

if(s.compareTo(Engine.ZERO) == -1){

s.add(Engine.PRIME);

}

}

}

}

if(r.compareTo(Engine.PRIME) == 1){

r.sub(Engine.PRIME);

}

if(r.compareTo(Engine.ZERO) == -1){

r.add(Engine.PRIME);

}

value = r;

}

The final part of the algorithm converts the values r and s, if they happen to be negative, to positive values

in the same residue class by adding the prime number. As a final task, the multiplicative inverse, which is

stored in r is saved back into the value that was initially given to the function.[62]
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7.2.8 Implementation of general class functions for the finite field Fp class

Several class functionalities are needed for a fully functional Fp calculation class. It provides an interme-

diate step between the BigInt data-structure from the Huldra-Library and the Fp2 class which uses the Fp2

data-structure for its underlying operations.

public class Fp {

private BigInt value;

public Fp(BigInt value) {

this.value = value.copy();

this.value.mod(Engine.PRIME);

}

public Fp(String value) {

this.value = new BigInt(value);

this.value.mod(Engine.PRIME);

}

public Fp copy(){

return new Fp(value.copy());

}

public void assign(Fp fp){

value.assign(fp.getValue().copy());

}

public void mod(){

value.mod(Engine.PRIME);

}

The first part of the general functions focuses on data initialization and value assignments. Every impor-

tant function needs to be implemented twice with support for a String and a BigInt parameter for inter-

compatibility of different parts of the program. Every new allocated Fp object needs to pass its values via a

copy function from one object to another. Otherwise it would be a call by reference which would loose the

original value.

The copy function is implemented in the Huldra-Library and copies the data-fields which hold the values.

The copy function of the Fp class returns a new Fp object. The assign function replaces the current value
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with a new one. After a new Fp has been created, the modulo function needs to be called, to ensure that the

value is within bounds of the prime number p.

public BigInt getValue() {

return value;

}

public void setValue(BigInt value) {

this.value = value;

}

The get- and set-functions provide typical java functionality for setting a value or reading from the object.

These functions are rarely used in the SIDH-Algorithm, because performance optimizations try to keep the

reading and creating new objects to a minimum thus leading to a re-usage of most objects while calculating

the algorithm.

public void add(BigInt x){

value.add(x);

mod();

}

public void add(Fp x){

add(x.getValue());

}

public void sub(BigInt x){

value.sub(x);

mod();

}

public void sub(Fp x){

sub(x.getValue());

}

public void mult(BigInt x){

value.mul(x);

mod();

}

public void mult(Fp x){

mult(x.getValue());

}
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public void square(){

mult(value);

}

The classical mathematical functions of the Fp class mostly use the implementations of the Huldra-Library

which already provides these basic functions. By adding the modulo operation after each mathematical op-

eration, the addition, subtraction and multiplication in Fp can be provided. The square function utilizes the

multiplication. Because it is used very rarely, a more performance optimized square function would make

no measurable difference. Every basic function needs to provide support for BigInt and String parameters

to ensure inter-compatibility.

public void shiftRight(int amount){

value.shiftRight(amount);

}

In the next part of the Fp class, the functions mainly contain bit-wise operators and comparative operations.

In the SIDH base algorithm only the right shift operation is needed. Although the Huldra-Library also pro-

vides fast lefts shifts, it is not implemented in Fp.

public boolean testBit(int bit){

return value.testBit(bit);

}

public boolean isZero(){

return value.isZero();

}

The testBit function checks if a bit is set on a given position. The function responds with a Boolean value

corresponding to true when the bit is set or false if the value on the given position is zero. The isZero func-

tion utilizes the functionality of the testBit function and checks if every bit in a number is zero, which in

conclusion means that the whole value of the allocated number equals to zero.

public int compareTo(Fp fp){

return value.compareTo(fp.getValue());

}

public boolean equals(Fp fp) {

return fp.getValue().equals(value);

}
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The compareTo functionality compares to Fp values and returns an Integer value, if one of the following

conditions are met.

a.compareTo(b) =


1, if a greater than b.

0, if a is equal to b.

−1, if a is smaller than b.

The equals method uses the BigInt compareTo functionality of the Huldra-Library and returns a true Boolean

value if the underlying function returns zero. The fast implementation of these function is important for the

SIDH algorithm, because loops and comparative algorithm sections can then be executed in a more opti-

mized way.

public void print(){

System.out.println(toString());

}

@Override

public String toString() {

return value.toString();

}

}

The last functions of the finite field Fp class are general print and String functionalities for debug and visu-

alization purposes.
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7.3 Finite Field Fp2 class implementation

The Fp2 class builds onto the Fp class and the underlying Huldra-Library. It adds support for the complex

number plane in Fp2 . The SIDH-Algorithm bases its calculations almost exclusively on this class. Only

some features like loop variables and temporary values that are kept rather small by using the Fp class.

7.3.1 Implementation of complex number multiplication in Fp2

public void mult(Fp2 fp2){

BigInt c = fp2.getX0().getValue().copy();

BigInt d = fp2.getX1().getValue().copy();

Fp ac = x0.getValue().copy();

Fp bd = x1.getValue().copy();

ac.mult(c);

bd.mult(d);

x1.add(x0);

c.add(d)

x1.mult(c)

x1.sub(ac)

x1.sub(bd)

x0 = ac;

x0.sub(bd)

}

Multiplication in the complex finite field is one of the most important functions, along with multiplicative

inverse and isogenic calculations in the SIDH algorithm. For this reason it is of utmost importance that these

functions are implemented as optimized and resource-saving as possible. The multiplication function can

be implemented in a classical way. This classical implementation uses four allocations, four multiplications

and one subtraction and addition.

Fp2 x = (a+ bi)

Fp2 y = (c+ di)

x ∗ y = (ac− bidi) ∗ (adi + bci)i
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Although the classical implementation does not have a huge code and computational complexity, there are

faster algorithms available. The following math segment shows the Karatsuba[64][65] algorithm, which

is a complex and big number multiplication method that is widely used in computational applications and

cryptography. The Karatsuba algorithm looks more compute intensive at first glance, but it only has three

multiplications, two additions and three subtractions. This is actually faster than the classical algorithm,

because a multiplication of a big number is a lot more resource intensive than any other base operation.

In the Karatsuba algorithm, certain multiplied values can be reused, which makes the code faster than the

classical multiplication. The downside is, that more variables need to be allocated. This can be ignored,

since memory allocations become less of a problem in a quantum-computing future.[65]

Fp2 x = (a+ bi)

Fp2 y = (c+ di)

x ∗ y = (ac− bidi) ∗ ((a+ bi)(c+ di)− ac− bidi)i

The algorithm calculates a ∗ c, bi ∗ di. These values used twice in the calculation. Winograds theorem[66]

proves, that the minimum number of multiplications needed in a complex number multiplication is limited

to three. This means, that the Karatsuba algorithm utilizes the least amount of multiplications possible.

The most promising way to further increase multiplication speed, is to optimize functions and algorithms

further down the computational tree. This means that the underlying multiplication function from the Hul-

dra library, which does the multiplication for two big numbers in the finite field Fp instead of Fp2 needs to

be optimized the correct way. This is not an easy task, since finding the correct trade-off between speed,

performance and security has been an ongoing problem in many cryptographic applications.

In the implementation of the SIDH-Algorithm, a derivative of the Karatsuba algorithm is also used in the Fp

multiplication, to have a certain red thread throughout all computations. This also provides the possibility to

compare different implementations to each other, and provide an analysis on the performance and memory

usage of different algorithms.
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7.3.2 Implementation of the complex number multiplicative inverse in Fp2

public void multiplicativeInverse(){

Fp x0t = x0.copy();

Fp x1t = x1.copy();

x0t.square();

x1t.square();

x0t.add(x1t);

x0t.multiplicativeInverse();

x1.negate();

x0.mult(x0t);

x1.mult(x1t);

}

The multiplicative inverse of a complex number in the finite field is dependant on the speed of four com-

ponents in the mathematical implementation. A fast basic multiplication, squaring in Fp2 , multiplicative

inverse in Fp and a fast addition. When these three things are as optimized as possible, then a fast multi-

plicative inverse in Fp2 is also possible, because the computational algorithm itself is rather short.

7.3.3 Implementation of the complex number pow function in Fp2

public void pow(BigInt exp){

BigInt e = exp.copy();

Fp2 base = copy();

x0 = Engine.FP2ONE.getX0().copy();

x1 = Engine.FP2ONE.getX1().copy();

while(e.compareTo(Engine.ZERO) == 1){

if(e.testBit(0)){

mult(base);

}

e.shiftRight(1);

base.square();

}

}

The java SIDH-Implementation does not use the classical multiplicative method to do exponential calcu-
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lations of complex numbers. Thea algorithm described above, is the so-called right-to-left binary expo-

nentiation, which is a combination of the exponentiation by squaring algorithm and the usage of modulo

arithmetic. To do calculations with this combined algorithm, the exponent must be considered as a power of

the number two. Assuming that the exponent is e = 2n, the result could be calculated by squaring the base

number n times. If the exponent is not a power of two, additional multiplications must be performed. If a

division by two without remainder is possible, then the base must be squared and the exponent divided with

this intermediate result. If there is a remainder of the modulus operation, the current base must be multiplied

by the intermediate result. The division is done by right shifts to calculate the algorithm according to the

computational rules of the finite field Fp2 .[59][67][68]

7.3.4 Implementation of the quadratic residue function in Fp2

private boolean isQuadraticResidue(){

BigInt p = Engine.PRIME.copy();

Fp2 base = copy();

p.mul(p);

p.sub(Engine.ONE);

p.shiftRight(1);

base.pow(p);

base.print();

if(base.equals(Engine.FP2ONE)){

return true;

}

return false;

}

The quadratic residue can logically divide an integer x modulo p into different congruence classes. Such an

integer in a congruence class is called a quadratic residue of p if there exits a integer y so that x2 ≡ y mod p.

If that is not the case for the integer x, it is called a quadratic non-residue.

This can be best explained with the Legendre symbol in Fp and Fp2 as shown in 4.2.7 and 7.2.2.
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7.3.5 Implementation of the complex number square roots Fp2

public void sqrt(){

if(equals(Engine.FP2ZERO)){

return;

}

if(!isQuadraticResidue()){

x0 = null;

x1 = null;

return;

}

BigInt pmod4 = Engine.PRIME.copy();

BigInt three = Engine.THREE.copy();

pmod4.and(three);

if(pmod4.equals(three)){

sqrt3mod4();

}else{

sqrt1mod4();

}

}

Calculating a square root in the finite field Fp2 takes more steps into consideration than it seems at first

glance. The difficult problem is, that the case p = 3 (mod 4) is pretty simple to calculate and p = 1 (mod 4)

is a much harder case. This is because p = 4k+3 forms a quadratic residue group that has odd order p−12 =

2k+1. This means that for a quadratic residue qp the unique square root is x = qpk+1 (mod p)[Lagrange

1769]. This does not apply for the case p = 1 (mod 4). A good example for this situation is, that -1 is

a quadratic residue, but it is not possible to find a power of -1 that can be a square root of -1. There are

many procedures that try to solve this problem. Unfortunately all algorithms that are used are probabilistic.

The p = 1 (mod 4) case is calculated with an optimized alternative version of the Tonelli-Shanks/Cipolla

algorithm.[69][70][71]

The sqrt function checks if the value is equal to zero. If that is the case, the function would exit and return to

the calling function. Afterwards the value is checked if it is a quadratic residue in Fp2 . Only values that are

a quadratic residue can be used in the square root function. The algorithm will run into an error otherwise.

The return value for the case of a quadratic non-residue is not defined and is generally not going to happen

unless the SIKE algorithm was implemented in a wrong way. This is way returns a NULL value that force

quits the program in the calling function.
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private void sqrt3mod4(){

Fp2 neg1 = Engine.FP2ONE.copy();

neg1.negate();

BigInt p = Engine.PRIME.copy();

p.shiftRight(2);

Fp2 a1 = copy();

a1.pow(p);

Fp2 a2 = copy();

a2.mult(a1);

a1.mult(a2);

if(a1.equals(neg1)){

a2.multByI();

x0 = a2.getX0();

x1 = a2.getX1();

return;

}

p = Engine.PRIME.copy();

p.shiftRight(1);

a1.add(Engine.FP2ONE);

a1.pow(p);

a1.mult(a2);

x0 = a1.getX0();

x1 = a1.getX1();

}

The algorithm above can be best explained with a simplified example. The code is longer than the math-

ematical example, because it is the adapted version for Fp2 and tries to use the least amount of memory

as possible whilst delivering good performance. The basic algorithm for computing a square root where

p = 3 (mod 4) follows the following notation:

p = 4k + 3

p = 7 = 4 ∗ 1 + 3 with k = 1

k = k + 1 = 2 is a quadratic residue

21 = 4 is a square root

42 = 16 (mod 7) ≡ 2
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private void sqrt1mod4(){

Fp a0 = x0.copy();

Fp a1 = x1.copy();

x0.square();

x1.square();

a1.add(a0);

a1.sqrt();

a1.sub(x0);

if(a1.equals(Engine.FPZERO)){

x0.sqrt();

x1 = Engine.FPZERO.copy();

}

a1.div2();

a1.sqrt();

a0 = a1.copy();

a0.multiplicativeInverse();

a0.mult(x1);

x0 = a0;

x1 = a1;

}

The p = 1 (mod 4) algorithm implementation takes longer to compute, since a multiplicative inverse is

needed in the algorithm and two square roots in the finite field Fp need to be found. p = 1 (mod 4) is

the least possible case for a square root in Fp2 and can be optimized by using more advanced algorithms.

Altough speed comes often with a trade-off of either more memory usage or a more sophisticated execution.

7.3.6 Implementation of the multiplication by I function in Fp2

public void multByI(){

Fp temp = x0.copy();

x0 = x1.copy();

x0.negate();

x1 = temp.copy();

}

}

The multiplication by I(=), which is the imaginary part of the a number on the complex number plane,
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describes the left-rotation of complex number on the plane by 90 degrees. The calculation is done by

switching the real part(<) of the complex number with the imaginary part(=). After that, the new real part

is negated. The following mathematical notation is an example of this rotation.

Fp2 z = (a+ bi)

Fp2 zrot = (−b+ ai)

Fp2 z = (3 + 4i)

A(z) = (3 + 4i)

B(z) = (−4 + 3i)

C(z) = (−3− 4i)

D(z) = (+4− 3i)

Figure 7.1: Rotation of a coordinate on the complex plane
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public class Fp2 {

private Fp x0, x1;

public Fp2(Fp x0, Fp x1) {

this.x0 = x0.copy();

this.x1 = x1.copy();

}

public Fp2(BigInt x0, BigInt x1) {

this.x0 = new Fp(x0.copy());

this.x1 = new Fp(x1.copy());

}

public Fp2(String x0, String x1) {

this.x0 = new Fp(new BigInt(x0));

this.x1 = new Fp(new BigInt(x1));

}

The first part of the finite field Fp2 class is the general data structure that holds the real part(<) and the

imaginary part(=) of the complex number. These values are represented by x0 for < and x1 for =. Each part

is a value in the finite field Fp. The class needs three input methods for compatibility, easier development

and future expansions. A number in the complex field Fp2 can be allocated by using either two Fp, BigInt

or String values. The latter two are both being converted to a value in Fp. If a value is too big to initially

exist in Fp2 or Fp it is automatically run through the modulo operation.

public Fp getX0() {

return x0;

}

public void setX0(Fp x0) {

this.x0 = x0;

}

public Fp getX1() {

return x1;

}

public void setX1(Fp x1) {

this.x1 = x1;

}

Get- and set-methods are used for easier access to the real part(<) and the imaginary part(=). This is most

commonly used in the key-recovery and isogenic algorithms.
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public void add(Fp2 fp2){

x0.add(fp2.getX0());

x1.add(fp2.getX1());

}

public void sub(Fp2 fp2){

x0.sub(fp2.getX0());

x1.sub(fp2.getX1());

}

public void negate(){

x0.negate();

x1.negate();

}

public void square(){

mult(this);

}

The class also provides the add-, sub-, negate- and square-function to provide the needed mathematical op-

erations for complex numbers in SIKE. The first three functions are straightforward implementations with

the Fp optimized additions and subtractions. The negation is a multiplication by -1 followed with a modulo

operation. The square function is utilizing the Fp2 multiplication function and the Fp multiplication function

on the second layer of operations. Both are optimized with the Karatsuba multiplication algorithm.

@Override

public String toString() {

return ""+ x0.toString() + " + " + x1.toString() + "*i";

}

public void print(){

System.out.println(toString());

}

The toString and print functions provide debugging possibilities and give the option to print the current

status, values and general output to the user or developer.
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public Fp2 copy(){

return new Fp2(x0.copy(), x1.copy());

}

public void assign(Fp2 fp2){

x0.assign(fp2.getX0());

x1.assign(fp2.getX1());

}

The copy and assign function are important parts in a program with mutable objects. Since the Fp2 objects

are reused as often as possible, there is the need to copy the whole objects or easily assign values to it. This

is mostly done by utilizing the underlying copy functions from Fp and the BigInt library. A copy operation

copies the whole value, which is allocated in the RAM(Random Access Memory) to a new and free space.

The assign function overwrites the space in the memory. This removes the value that was stored there be-

forehand. Depending on the size of the new value it automatically increases or decreases the allocated space,

thus optimizing the general memory usage.

public boolean isZero(){

return x0.isZero() x1.isZero();

}

public boolean equals(Fp2 fp2) {

return fp2.getX0().equals(x0) fp2.getX1().equals(x1);

}

}

The last part of this class consists of comparative functions. The isZero method returns a true Boolean value

when both, x0 and x1 are equal to zero in Fp. The equals method returns a true Boolean value, when both,

the real and the imaginary part of a complex number in Fp2 are equal.
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7.4 Montgomery and isogeny math class implementation

7.4.1 Implementation of the Montgomery point doubling method

The affine point doubling on a Montgomery curve(4.5.2) is a special function for a point P to calculate [2]P

faster than with a coordinate addition in the complex plane.

public Point xDBL(Point p, Fp2 a, Fp2 b){

if(p.isInfinite()){

return p;

}

In the first parth of the algorithm, the points need to be checked in order to work correctly. In the if-section

the point itself is returned to the caller, if the point P is the the point at infinity(O). This would lead to an

error in further calculations. The point is not being checked for its order since the caller needs to make sure

to only send the correct points, whose order do not divide two, into the function.The parameters for this al-

gorithm are the point P , that needs to be doubled and the coefficientsA andB of the Montgomery curve.[39]

Fp2 t0 = p.x.copy();

t0.square();

Fp2 t1 = t0.copy();

t1.add(t0);

t0.add(t1);

t1.assign(a.copy());

t1.mult(p.x);

t1.add(t1);

t0.add(t1);

Fp2 t2 = b.copy();

t0.add(t2);

t1.assign(b.copy());

t1.mult(p.y);

t1.add(t1);

t1.multiplicativeInverse();

Since this algorithm follows the principle of the affine coordinate doubling, the B coefficient needs to be

used within the algorithm. Although there is a faster algorithm, which utilizes the projective plane, this

implementation of the SIDH-Algorithm tries to optimize the existing reference algorithms from the NIST

submission.[39]
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The multiplicative inverse is besides the multiplications, the most resource and performance hungry opera-

tion in the affine coordination doubling.

t0.mult(t1);

t1.assign(t0.copy());

t1.square();

t2.assign(b.copy());

t2.mult(t1);

t2.sub(a);

t2.sub(p.x);

t2.sub(p.x);

t1.mult(t0);

t1.mult(b);

t1.add(p.y);

Fp2 y = p.x.copy();

y.add(p.x);

y.add(p.x);

y.add(a);

y.mult(t0);

y.sub(t1);

return new Point(t2, y);

}

In the final part of the algorithm, the variable t2 holds the new x-coordinate and the variable y holds the

y-coordinate. It is important to note, that both coordinates are numbers on the complex plane in the finite

field Fp2 .
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7.4.2 Repeated Montgomery point doubling method

public Point xDBLe(Point p, Fp2 a, Fp2 b, BigInt e){

Point p2 = p.copy();

for (BigInt i = Engine.ZERO.copy(); !i.equals(e); i.add(Engine.ONE

)) {

p2 = xDBL(p2, a, b);

}

return p2;

}

The repeated affine Montgomery point doubling method consecutively executes the xDBL function until the

function parameter e reaches zero. The result of the xDBL function is used as the starting value for the next

iteration. When the parameter e is big enough and one iteration reaches a point with a small order, than there

is the possibility, that the new point reaches infinity. This is almost non-existent in the SIDH-Algorithm,

because the finite field in the complex plane is accordingly big.

7.4.3 Implementation of the Montgomery point addition method

The following code describes the Montgomery point addition(4.5.1) as explained in the math section. The

focus lies on a fast addition whilst keeping slim on the resources.

public Point xADD(Point p, Point q, Fp2 a, Fp2 b){

Fp2 minusQY = q.y.copy();

minusQY.negate();

if(p.isInfinite()){

return q;

}

else if(q.isInfinite()){

return p;

}

else if(p.equals(q)){

return xDBL(p, a, b);

}

else if(p.y.equals(minusQY)){

return Engine.INFINITE;

}

70



7 SIKE-Java

Too keep the error rate down and optimize the execution time, some efficency checks need to be done. In the

first part of the addition algorithm the function returns P if Q is equal to the point at infinity(O) or returns

Q if P is the equal to the point at infinity. When both points P and Q are equal, it is better to execute

the Montgomery doubling method(7.4.1) for increased performance and better execution times. If Q is the

additive complex inverse of P in Fp2 the functions returns the point at infinity(O).

Fp2 t0 = q.y.copy();

t0.sub(p.y);

Fp2 t1 = q.x.copy();

t1.sub(p.x);

t1.multiplicativeInverse();

t0.mult(t1);

t1.assign(t0.copy());

t1.square();

Fp2 t2 = p.x.copy();

t2.add(p.x);

t2.add(q.x);

t2.add(a);

t2.mult(t0);

t0.mult(t1);

t0.mult(b);

t0.add(p.y);

t0.negate();

t0.add(t2);

t1.mult(b);

t1.sub(a);

t1.sub(p.x);

t1.sub(q.x);

return new Point(t1,t0);

}

The xADD function returns a new point with the added x and y values, which are themselves complex finite

field numbers.

The speed of point addition is mainly affected by the speed of the multiplicative inverse and multiplication

in Fp2 , which is based on the speed of all underlying multiplication functions. The BigInt-Library tries to

keep all assignments to a minimum to increase speed and performance.[39]
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7.4.4 Implementation of the Montgomery point tripling method

public Point xTPL(Point p, Fp2 a, Fp2 b){

Point p2 = xDBL(p,a,b);

p2 = xADD(p2, p, a, b);

return p2;

}

The tripling method first doubles a point with the Montgomery point doubling method and then adds the

base point to the resulting value. This method is very comparable to the double-and-add function, but does

not serve the Montgomery ladder functionality.

7.4.5 Repeated Montgomery point tripling method

The following function repeatedly executes Montgomery point tripling method.

public Point xTPLe(Point p, Fp2 a, Fp2 b, BigInt e){

Point p2 = p.copy();

for (BigInt i = Engine.ZERO.copy(); !i.equals(e); i.add(Engine.ONE

)) {

p2 = xTPL(p2, a, b);

}

return p2;

}
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7.4.6 Implementation of the Montgomery double-and-add method

The Montgomery double-and-add method compares relatively closely to the Montgomery ladder[72], sine

it also computes a scalar multiplication for a given bit length of an Integer value. The double-and-add

algorithm, which is also comparable to a square-and-multiply operation, provides a similar problem like

the discrete logarithm is in the multiplicative group. This problem can be achieved via the double-and-add

method or the Montgomery ladder. Although they are similar, there is a difference in security and the pos-

sibility of performance optimizations.[72][73]

public Point double_and_add(BigInt mc, Point p, Fp2 a, Fp2 b){

BigInt m = mc.copy();

Point q = Engine.INFINITE.copy();

String binary = m.toString();

BigInteger b1 = new BigInteger(binary);

String binary2 = b1.toString(2);

int length = binary2.length();

In the first part of the algorithm, the scalar is being transformed into binary representation to account for

the loop in the second part of the algorithm, because an addition only happens if a bit in the scalar is set to

true. For the transformation the Java class BigInteger is used. This is needed because the third party Huldra-

Library does not support this direct conversion yet. For a real world application this needs to be exchanged

with the correct BigInt format to remove dependencies to internal Java libraries. This is absolutely needed

for an application in Java smart cards or any other comparable cryptographic key system.

for (int i = length-1; i>=0; i--) {

q = xDBL(q, a, b);

if(m.testBit(i)){

q = xADD(q, p, a, b);

}

}

return q;

}

The last part is the classical double-and-add method. The loop is dependent on the bit value of the variable

m, which means, that each iteration does not complete in constant time. This is a security consideration

and it brings up the possibility to utilize a modified Montgomery ladder to tackle this problem and calcu-

late the algorithm in constant time with slightly less performance. This seems like a good trade-off, but also

the constant Montgomery ladder is vulnerable to low level hardware attacks that read the calculation timings.
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7.4.7 Implementation of the j-Invariant of a Montgomery curve

The j-invariant, is besides the isogenic calculations, the most important function of the SIDH-Algorithm. It

is not overly complex, but it calculates a specific curve descriptor, which is used as the secret value in the

key exchange from SIDH and the key encapsulation from SIKE.[39]

The Montgomery curve E is defined by the curve coefficients A and B. The most important value for

the Montgomery curve is A which completely determines its geometry. The following equation shows the

j-invariant for the Montgomery curve. An important fact is the absence of B in the equation. B can be de-

scribed as twisting factor and gives certain freedom to construct important points for different cryptographic

applications.[74]

j(EA,B) =
256(A2 − 3)3

A2 − 4

The coded algorithm uses speed and memory optimization, thus the operations are different than the math-

ematical notation.

public Fp2 j_inv(Fp2 a){

Fp2 t0 = a.copy();

t0.square();

Fp2 j = new Fp2("3", "0");

j.negate();

j.add(t0);

Fp2 t1 = j.copy();

t1.square();

j.mult(t1);

j.add(j);

j.add(j);

j.add(j);

j.add(j);

j.add(j);

j.add(j);

j.add(j);

j.add(j);
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It is more efficient to use additions instead of multiplications for a small multiplicand. Since j is dependent

on the size of the curve, its size varies for different finite fields in which the curves reside. For a small curve

a multiplication would be fine, but with a finite field hundreds of bits long, this situation is very different.

t1 = new Fp2("4", "0");

t0.sub(t1);

t0.multiplicativeInverse();

j.mult(t0);

return j;

}

The last part of the j-invariant function is implemented with the modified algorithm by utilizing a mul-

tiplicative inverse for faster computational speed. Although the general idea is to minimize the usage of

multiplicative inverses, because its computation in Fp2 is quite resource intensive. This is not the same with

the j-invariant function because t0, which is used in the multiplicative inverse algorithm is very small and

only holds the curve coefficient A2. This value is always the same on each curve and that makes the value

predictably small. In the end the function returns the calculated j-invariant value.
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7.4.8 Implementation of the 4-isogeny curve coefficient algorithm

The 4-isogeny function takes a point P and the curve twisting coefficient B as parameters and calculates

new A′ and B′ corresponding to EA′,B′ = EA,B/〈P4〉. The input point has to have the exact order(4.5.1) of

4 on the base curve E . This is why the algorithm is called 4-isogeny.

The isogeny φ4 = EA,B −→ EA′,B′ is the unique 4-isogeny up to isomorphism with kernel 〈(x4, y4)〉. The

new coefficients A′ and B′ can be computed as follows:

(A′, B′) = (4x44 − 2,−x4(x24 + 1) ∗ B
2
)

public Fp2[] curve_4_iso(Point p, Fp2 b){

Fp2 t1 = p.x.copy();

t1.square();

Fp2 a2 = t1.copy();

a2.square();

a2.add(a2);

a2.add(a2);

Fp2 t2 = new Fp2("2", "0");

a2.sub(t2);

t1.mult(p.x);

t1.add(p.x);

t1.mult(b);

t2.multiplicativeInverse();

t2.negate();

t2.mult(t1);

return new Fp2[]{a2,t2};

}
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7.4.9 Implementation of the 4-isogeny curve point algorithm

The second 4-isogeny function is the most complex and computation heavy algorithm implementation in

the whole SIKE cryptosystem. It takes two points P and Q as parameters, where P is any point on the base

curve EA,B that is not in kernel φ4. This means that the isogeny φ4 = (xP , yP ) −→ (xφ4(P ), yφ4(P )).

The algorithms for xφ4(P ) and yφ4(P ) is the following:

xφ4(P ) =
−xP (xPx24 + xP − 2x4)(xPx4 − 1)2

(2xPx4 − x24 − 1)(xP − x4)2

yφ4(P ) = yP ∗
−2x24(xPx4 − 1)(x4P (x

2
4 + 1)− (4x3P (x

3
4 + x4) + 2x2P (x

4
4 + 5x24)− 4xP (x

3
4 + x4) + x24 + 1)

(xP − x4)3(2xPx4 − x24 − 1)

The equations for xφ4(P ) and yφ4(P ) can be optimized programmatically with the use of an multiplicative

inverse and allocation optimizations.

public Point eval_4_iso(Point p, Point q){

Fp2 t1 = q.x.copy();

t1.square();

Fp2 t2 = t1.copy();

t2.square();

Fp2 t3 = p.x.copy();

t3.square();

Fp2 t4 = t2.copy();

t4.mult(t3);

t2.add(t4);

t4.assign(t1.copy());

t4.mult(t3);

t4.add(t4);

Fp2 t5 = t4.copy();

t5.add(t5);

t4.add(t5);

t2.add(t4);

t4.assign(t3.copy());

t4.mult(t3);

t5.assign(t1);

t5.mult(t4);

t5.add(t5);

t2.add(t5);

t1.mult(q.x);

t4.assign(p.x.copy());
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t4.mult(t3);

t5.assign(t1.copy());

t5.mult(t4);

t5.add(t5);

t5.add(t5);

t2.sub(t5);

t1.mult(p.x);

t1.add(t1);

t1.add(t1);

t1.negate();

t1.add(t2);

t2.assign(q.x.copy());

t2.mult(t4);

t2.add(t2);

t2.add(t2);

t1.sub(t2);

t1.add(t3);

t1.add(Engine.FP2ONE);

t2.assign(q.x.copy());

t2.mult(p.x);

t4.assign(t2.copy());

t4.sub(Engine.FP2ONE);

t2.add(t2);

t5.assign(t2.copy());

t5.add(t5);

t1.sub(t5);

t1.mult(t4);

t1.mult(t3);

t1.mult(q.y);

t1.add(t1);

Fp2 ynew = t1.copy();

ynew.negate();

t2.sub(t3);

t1.assign(t2.copy());

t1.sub(Engine.FP2ONE);

t2.assign(q.x.copy());

t2.sub(p.x);

t1.mult(t2);

t5.assign(t1.copy());

t5.square();

t5.mult(t2);

t5.multiplicativeInverse();
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ynew.mult(t5);

t1.mult(t2);

t1.multiplicativeInverse();

t4.square();

t1.mult(t4);

t1.mult(q.x);

t2.assign(q.x.copy());

t2.mult(t3);

t2.add(q.x);

t3.assign(p.x.copy());

t3.add(p.x);

t2.sub(t3);

t2.negate();

t1.mult(t2);

return new Point(t1, ynew);

}

The function returns a new point that lies on the curve EA′,B′ . The morphism from EA,B to EA′,B′ is de-

scribed by φ4(P ).
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7.4.10 Implementation of the 3-isogeny curve coefficient algorithm

The 3-isogeny curve coefficient algorithm also calculates a new A and B corresponding to an input point.

But unlike the 4-isogeny algorithm it takes both parameters A and B from a curve. When P ∈ EA,B with

exact order of 3, then φ3 = (xP , yP ) −→ (xφ3(P ), yφ3(P )) describes the isogeny from EA,B to EA′,B′ . The

function can be computed as follow:

(A′, B′) = ((Ax3 − 6x23 + 6)x3, Bx
2
3)

It is important to note, that the new coefficient A′ only depends on A and xP

public Fp2[] curve_3_iso(Point p, Fp2 a, Fp2 b){

Fp2 t1 = p.x.copy();

t1.square();

Fp2 b2 = t1.copy();

b2.mult(b.copy());

t1.add(t1);

Fp2 t2 = t1.copy();

t2.add(t2);

t1.add(t2);

t2.assign(new Fp2("6","0"));

t1.sub(t2);

t2.assign(a.copy());

t2.mult(p.x);

t1.negate();

t1.add(t2);

t1.mult(p.x);

return new Fp2[]{t1, b2};

}
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7.4.11 Implementation of the 3-isogeny curve point algorithm

The 3-isogeny curve point algorithm takes two points P and Q and constructs an isogeny to a new point on

a new isogenous elliptic curve. The point Q needs to be of exact order of 3 on EA,B . P is any point and not

in kernel φ3. If that is the case, then φ3 = (xP , yP ) −→ (xφ3(P ), yφ3(P )). The new 3-isogenous point can be

calculated as follows:

xφ3(P ) =
xP (xPx3 − 1)2

(xP − x3)2

yφ3(P ) = yP ∗
(xPx3 − 1)2(x2Px3 − 3xPx

2
3 + xP + x3)

(xP − x3)2

public Point eval_3_iso(Point p, Point q){

Fp2 t1 = q.x.copy();

t1.square();

t1.mult(p.x);

Fp2 t2 = p.x.copy();

t2.square();

t2.mult(q.x);

Fp2 t3 = t2.copy();

t3.add(t3);

t2.add(t3);

t1.sub(t2);

t1.add(q.x);

t2.assign(q.x.copy());

t2.sub(p.x);

t2.multiplicativeInverse();

t3.assign(t2.copy());

t3.square();

t2.mult(t3);

Fp2 t4 = q.x.copy();

t4.mult(p.x);

t4.sub(Engine.FP2ONE);

t1.mult(t4);

t1.mult(t2);

t2.assign(t4.copy());

t2.square();

t2.mult(t3);

t2.mult(q.x);

t1.mult(q.y);

return new Point(t2, t1);

}
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7.4.12 Computation and evaluation of a 2e-isogeny

The 2e-isogeny function serves a special function to generate isogenies from points with a certain kernel.

This function takes both A and B from the curve EA,B and a point S with exact order of 2e on EA,B . The

parameter e is equal to e2 from the public parameters of the SIKE algorithm and is used to describe the

primary base field.

This function automatically traverses multiple supersingular elliptic curves, until it reaches the correct curve

within the same kernel.

public IsoReturn iso_2_e(Point s, Fp2 a, Fp2 b, Point[] p){

Fp2 a2 = a.copy();

Fp2 b2 = b.copy();

BigInt e = Engine.E2.copy();

e.sub(Engine.TWO);

Point r;

for (; !e.equals(Engine.MINUSTWO); e.sub(Engine.TWO)) {

r = xDBLe(s, a2, b2, e);

Fp2 ab[] = curve_4_iso(r, b2);

a2.assign(ab[0]);

b2.assign(ab[1]);

s = eval_4_iso(s, r);

for (int i = 0; i < p.length; i++) {

p[i] = eval_4_iso(p[i], r);

}

}

return new IsoReturn(a, b, p);

}

The function returns an isogeny with the new coefficients A′ and B′ on the supersingular elliptic curve

EA′,B′ = E \ 〈S〉 and a new isogenic point on that curve.

7.4.13 Computation and evaluation of a 3e-isogeny

The 3e-isogeny computation uses the public parameter e3 as the exponential and the point S with the order

of 3e3 on the base curve EA,B . Besides this difference and the usage of the 4-isogeny functions, this algorithm

does the same as 7.4.12.
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public IsoReturn iso_3_e(Point s, Fp2 a, Fp2 b, Point[] p){

Fp2 a2 = a.copy();

Fp2 b2 = b.copy();

BigInt e = Engine.E3.copy();

e.sub(Engine.ONE);

Point r;

for (; !e.equals(Engine.MINUSONE); e.sub(Engine.ONE)) {

r = xDBLe(s, a2, b2, e);

Fp2 ab[] = curve_3_iso(r, a2, b2);

a2.assign(ab[0]);

b2.assign(ab[1]);

s = eval_3_iso(s, r);

for (int i = 0; i < p.length; i++) {

p[i] = eval_3_iso(p[i], r);

}

}

return new IsoReturn(a, b, p);

}

7.4.14 Implementation of the x-Coordinate recovery algorithm

The public generator points are only defined for P and Q. The xR coordinate of the third point R can be

recovered from P andQ with the help of the two coefficientsA andB. This can be used to recover different

xR-coordinates for the point R depending on the curve and isogeny the point is needed in. xR is calculated

so that R = P −Q.

public Point get_xR(Fp2 a, Fp2 b, Point p, Point q){

Point q2 = q.copy();

q2.y.negate();

Point r = xADD(p, q2, a, b);

return r;

}

Q is negated and then added to P which is equal to P − Q. Although both, xR and yR are existing in R

only xR is needed in SIKE.
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7.4.15 Implementation of the y-Coordinate recovery algorithm

A public key essentially holds the x-coordinates of the three points P,Q and R. With the following algo-

rithm it is possible to recover A and B from an elliptic curve E . This public key is based upon and the

y-coordinates from P and Q. After that, the program knows the full parameters of the curve EA,B and the

points P and Q. This is an essential function and utilized for further calculations when the Public-Key is

being transferred between participants.[39]

public Fp2[] get_yP_yQ_A_B(PublicKey pk){

Fp2 xp = pk.getXp().copy();

Fp2 xq = pk.getXq().copy();

Fp2 xr = pk.getXr().copy();

Fp2 a = xp.copy();

a.mult(xq);

a.mult(xr);

a.add(a);

a.add(a);

a.multiplicativeInverse();

Fp2 t1 = xp.copy();

Fp2 t2 = Engine.FP2ONE.copy();

t1.mult(xr);

t2.sub(t1);

t1 = xq.copy();

t1.mult(xr);

t2.sub(t1);

t2.square();

a.mult(t2);

a.sub(xp);

a.sub(xq);

a.sub(xr);

t1 = xp.copy();

t1.square();

t2 = t1.copy();
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t2.mult(xp);

t1.mult(a);

t1.add(t2);

t1.add(xp);

t1.sqrt();

Fp2 yp = t1.copy();

t1 = xq.copy();

t1.square();

t2 = t1.copy();

t2.mult(xq);

t1.mult(a);

t1.add(t2);

t1.add(xq);

t1.sqrt();

Fp2 yq = t1.copy();

t1.negate();

Point p = new Point(xp, yp);

Point q = new Point(xq, t1);

p = xADD(p, q, a, Engine.B);

Both P and Q are being populated with the values from the y-coordinate recovery algorithm.[39]

if(!p.x.equals(xr)){

return new Fp2[]{yp, t1, a, Engine.B.copy()};

}

return new Fp2[]{yp, yq, a, Engine.B.copy()};

}

The function returns an array consisting of yP , yQ, A and B from E .
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7.4.16 Implementation of the 2e-isogeny secret key generation

public Fp sk_keygen_2(){

BigInteger pow = new BigInteger("2").pow(Integer.parseInt(Engine.

E2.toString()));

pow = pow.subtract(BigInteger.ONE);

SecureRandom rnd = new SecureRandom();

int numBits = pow.bitLength();

BigInteger randval;

do {

randval = new BigInteger(numBits, rnd);

}while(randval.bitLength() != numBits);

return new Fp(randval.toString());

}

The 2e-isogeny secret key generation outputs a random value according to the bit-length of the boundaries

[0, 2e2 − 1].[39]

7.4.17 Implementation of the 3e-isogeny secret key generation

public Fp sk_keygen_3(){

BigInteger pow = new BigInteger("3").pow(Integer.parseInt(Engine.

E3.toString()));

int bitLength = pow.bitLength();

pow = new BigInteger("2").pow(bitLength);

pow = pow.subtract(BigInteger.ONE);

SecureRandom rnd = new SecureRandom();

int numBits = pow.bitLength();

BigInteger randval;

do {

randval = new BigInteger(numBits, rnd);

}while(randval.bitLength() != numBits);

return new Fp(randval.toString());

}

}

The 3e-isogeny secret key generation outputs a random value according to the bit-length of the boundaries

[0, 2(log2(3
e
3)−1)].
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7.4.18 Implementation of the 2e-isogeny public key generation

The 2e-isogeny public key from the SIKE algorithm[39] is calculated with the following parameters:

• The prime p = 2e23e3 − 1

• The curve E0 ∈ Fp2

• Public generator points P2 and Q2 with the coordinates xP2 and xQ2

• Recovered x-coordinate of R with xR2

• The secret key sk2

With these parameters set in place, it is possible to calculate the isogenic key pair consisting of the secret

key sk2, which is a BigInt value and the public key pk2 consisting of the x-coordinates xP2 , xQ2 , xR2

The computation follows this algorithm:

• Set a new point xS to xP2

• Traverse the Montgomery ladder with Q2 until the secret key sk2 is satisfied.

• Add ladder result to xS so that xS = xP2 + [sk2]Q2

• Define i and iterate from 0 to e2 − 1 for the next step

• Compute x-coordinate of the 2-isogeny so that φi = Ei −→ E ′ and (x) −→ (fi(x))

• xS-coordinate from the point S on the curve Ei should have kernel 〈[2e2−i−1]S〉 isogeny φi

• Set xS so that xS = fi(xS) using the isogeny φi and curve E ′

• Recover xR with A and B from E ′ and two points from the isogeny φi

• Set (xP , xQ, xR) to (fi(xP2), fi(xQ2), fi(xR2)

• Return the public key pk2(xP , xQ, xR)

public PublicKey isogen_2(BigInt sk){

Fp2 a = Engine.FP2ZERO.copy();

Fp2 b = Engine.FP2ONE.copy();

Point s = double_and_add(sk, Engine.Q2.copy(), a, b);

s = xADD(Engine.P2.copy(), s, a, b);

IsoReturn ir = iso_2_e(s, a, b, new Point[]{Engine.P3.copy(),

Engine.Q3.copy()});

Point[] points = ir.getP();

Point r = get_xR(a, b, points[0], points[1]);

return new PublicKey(points[0].x, points[1].x, r.x);

}
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7.4.19 Implementation of the 3e-isogeny public key generation

The 3e-isogeny public key follows the same principle as the 3e-isogeny public key(7.4.18) with different

parameters and exponents[39]:

• The prime p = 2e23e3 − 1

• The curve E0 ∈ Fp2

• Public generator points P3 and Q3 with the coordinates xP3 and xQ3

• Recovered x-coordinate of R with xR3

• The secret key sk3

With these parameters set in place, it is possible to calculate the isogenic key pair consisting of the secret

key sk3 which is a BigInt value and the public key pk3 consisting of the x-coordinates xP3 , xQ3 , xR3

The computation follows this algorithm:

• Set a new point xS to xP3

• Traverse the Montgomery ladder with Q3 until the secret key sk3 is satisfied.

• Add ladder result to xS so that xS = xP3 + [sk3]Q3

• Define i and iterate from 0 to e3 − 1 for the next step

• Compute x-coordinate of the 3-isogeny so that φi = Ei −→ E ′ and (x) −→ (fi(x))

• xS-coordinate from the point S on the curve Ei should have kernel 〈[3e3−i−1]S〉 isogeny φi

• Set xS so that xS = fi(xS) using the isogeny φi and curve E ′

• Recover xR with A and B from E ′ and two points from the isogeny φi

• Set (xP , xQ, xR) to (fi(xP3), fi(xQ3), fi(xR3)

• Return the public key pk3(xP , xQ, xR)

public PublicKey isogen_3(BigInt sk){

Fp2 a = Engine.FP2ZERO.copy();

Fp2 b = Engine.FP2ONE.copy();

Point s = double_and_add(sk, Engine.Q3.copy(), a, b);

s = xADD(Engine.P3.copy(), s, a, b);

IsoReturn ir = iso_3_e(s, a, b, new Point[]{Engine.P2.copy(),

Engine.Q2.copy()});

Point[] points = ir.getP();

Point r = get_xR(a, b, points[0], points[1]);

return new PublicKey(points[0].x, points[1].x, r.x);

}
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7.4.20 Implementation of the 2e-isogeny key exchange

The 2e-isogeny key exchange takes the prime number p = 2e23e3 − 1, the secret key sk2 and the public key

pk3 and calculates a shared secret j with the j-invariant function as described in 7.4.7. The shared secret

should be the same for both SIKE participants, given that no errors happened during the transmission or the

calculations.[39]

The following algorithm handles the key exchange and computes the j-invariant:

• Calculate the base curve E′0 from the public key pk3

• Define a new point S and set xs to xP2

• Traverse the Montgomery ladder with Q2 until the secret key sk2 is satisfied.

• Add the result of the ladder to S so that xS = xP2 + [sk2]Q2

• Define i and iterate from 0 to e2 − 1 for the next step

• Compute x-coordinate of the 2-isogeny so that φi = E ′i −→ E ′ and (x) −→ (fi(x))

• xS-coordinate from the point S on the curve E ′i should have kernel 〈[2e2−i−1]S〉 isogeny φi

• Set xS so that xS = fi(xS) using the isogeny φi and curve E ′i
• Return the j-invariant of the curve E ′e2

public Fp2 isoex_2(BigInt sk, PublicKey pk){

Fp2[] t = get_yP_yQ_A_B(pk);

Point q = new Point(pk.getXq().copy(), t[1]);

Point p = new Point(pk.getXp(), t[0]);

Fp2 a = t[2];

Fp2 b = t[3];

Point s = double_and_add(sk, q, a, b);

s = xADD(p, s, a, b);

IsoReturn is = iso_2_e(s, a, b, new Point[]{});

Fp2 j = j_inv(is.getA());

return j;

}
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7.4.21 Implementation of the 3e-isogeny key exchange

The 3e-isogeny key exchange is very similar to the 2e-isogeny version. The main difference is, that the 3e-

isogeny is faster to calculate and is overall quicker performance wise. Despite this differences, both versions

are needed to compute SIKE.[39]

This key exchange takes the prime number p = 2e23e3 − 1, the secret key sk3 and the public key pk2 and

calculates a shared secret j with the j-invariant function as described in 7.4.7. The shared secret should be the

same for both SIKE participants, given that no errors happened during the transmission or the calculations.

This means that both, the j-invariant of the 2e-isogeny and the j-invariant of this function is the same after

a correct key exchange. This is the case when the 2e-isogeny key exchange calculates its j-invariant with

the secret key sk2 and and the public key pk3. The other participant needs to calculate the 3e-isogeny key

exchange with the secret key sk3 and and the public key pk2.[39]

The following algorithm handles the key exchange and computes the j-invariant:

• Calculate the base curve E′0 from the public key pk2

• Define a new point S and set xs to xP3

• Traverse the Montgomery ladder with Q3 until the secret key sk3 is satisfied.

• Add the result of the ladder to S so that xS = xP3 + [sk3]Q3

• Define i and iterate from 0 to e3 − 1 for the next step

• Compute x-coordinate of the 3-isogeny so that φi = E ′i −→ E ′ and (x) −→ (fi(x))

• xS-coordinate from the point S on the curve E ′i should have kernel 〈[3e3−i−1]S〉 isogeny φi

• Set xS so that xS = fi(xS) using the isogeny φi and curve E ′i
• Return the j-invariant of the curve E ′e3

public Fp2 isoex_3(BigInt sk, PublicKey pk){

Fp2[] t = get_yP_yQ_A_B(pk);

Point q = new Point(pk.getXq().copy(), t[1]);

Point p = new Point(pk.getXp(), t[0]);

Fp2 a = t[2];

Fp2 b = t[3];

Point s = double_and_add(sk, q, a, b);

s = xADD(p, s, a, b);

IsoReturn is = iso_3_e(s, a, b, new Point[]{});

Fp2 j = j_inv(is.getA());

return j;

}
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7.5 Montgomery Fp2 Point class implementation

The Montgomery Fp2 point is as a data-holding class to store complex curve points. This could be inline

since the isogenic calculations don’t require a lot of point transfer between values, but to keep the coding

style according to the Java object orientated workflow, this class is being used.

public class Point{

public final Fp2 x, y;

public Fp degree;

public Point(Fp2 x, Fp2 y) {

this.x = x;

this.y = y;

}

public Point(String x0, String x1, String y0, String y1) {

x = new Fp2(new BigInteger(x0, 16).toString(), new BigInteger(x1,

16).toString());

y = new Fp2(new BigInteger(y0, 16).toString(), new BigInteger(y1,

16).toString());

}

Each point consists of an x and y value, which are both values in the complex number field Fp2 . This means

that each value consists of an real part < and an imaginary part =.

The class constructors serves for Fp2 compatibility and String compatibility to provide easier allocations

from within the program.

@Override

public String toString() {

return String.format("(%s, %s)", x.toString(), y.toString());

}

public String toDegreeString() {

if(degree != null){

return String.format("(%s, %s) --> %s", x.toString(), y.

toString(), degree.toString());

}

return String.format("(%s, %s)", x.toString(), y.toString());

}

91



7 SIKE-Java

public void print(){

System.out.println(toDegreeString());

}

The first output function overrides the basic toString() method to provide basic debug and user output. The

second function provides information about the order(4.5.1) of the point. The knowledge of the order is

especially important to check or prove the correct operation of certain function. For example the isogeny

graph operations need points with exact order of 3 or 4 on the elliptic curve. The third function is used to

directly print to the user or developer.

public Fp getDegree() {

return degree;

}

public void setDegree(Fp degree) {

this.degree = degree;

}

public Point copy(){

return new Point(x.copy(), y.copy());

}

The complex point class also has the possibility to save and read the degree value, as well as copy the point

into a new variable. The copy function is utilized very often, since every calculation on points is based upon

mutable mathematical objects. This means that when a mathematical operation needs to be done and the

value needs to be saved for concurrent calculations, the point is going to be copied into a new object.

public boolean isInfinite(){

return x.isZero() y.isZero();

}

public boolean equals(Point p) {

return p.x.equals(x) p.y.equals(y);

}

}

The last part of this class focuses on comparative function. The first one checks if a certain point is the

point at infinity. This function returns true when both complex coordinates return zero. The second function

returns a Boolean value if the location is the same for both points. This means that both, the x and the y

coordinate needs to be compared.
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P .equals(Q) =


1, if x and y of P is greater than x and y of Q.

0, if x or y of P is smaller than x or y of Q.

7.6 Public-key class implementation

The public-key class holds the Montgomery values that represent a public key. These include of the x-values

of P and Q and the x-value of R, which is a special point that has been recovered from the two aforemen-

tioned Montgomery points.

package org.fh.sidh_new;

public class PublicKey {

private Fp2 xp, xq, xr;

public PublicKey(Fp2 xp, Fp2 xq, Fp2 xr) {

this.xp = xp;

this.xq = xq;

this.xr = xr;

}

This class is mainly used for data storage and transfers between certain isogeny functions. Usually all val-

ues are immediately set on creation of this object, but there is the possibility that some values need to be

exchange while going trough the SIKE algorithm for key encapsulation. This is also dependant on the usage

of the keys and the isogenic algorithm used.

public Fp2 getXp() {

return xp;

}

public void setXp(Fp2 xp) {

this.xp = xp;

}

public Fp2 getXq() {

return xq;

}
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public void setXq(Fp2 xq) {

this.xq = xq;

}

public Fp2 getXr() {

return xr;

}

public void setXr(Fp2 xr) {

this.xr = xr;

}

}

The second and final part of this class consists of get- and set-functions for the three Public-key points.

7.7 IsoReturn data-hoalding class implementation

The IsoReturn class holds isogenic values that need to be exchanged with certain functions. This class holds

the coefficients of an isogenic curve and 1 to n Montgomery points that lie on this isogenic curve.

public class IsoReturn {

private Fp2 a, b;

private Point p[];

public IsoReturn(Fp2 a, Fp2 b, Point[] p) {

this.a = a;

this.b = b;

this.p = p;

}

In the first part of the IsoReturn class, the values a and b, which describe the new isogenic Montogmery

curve and a Point array is being allocated. The size of this array depends of the input on the 3-isogeny and

4-isogeny functions.

public Fp2 getA() {

return a;

}

public void setA(Fp2 a) {

this.a = a;
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}

public Fp2 getB() {

return b;

}

public void setB(Fp2 b) {

this.b = b;

}

public Point[] getP() {

return p;

}

public void setP(Point[] p) {

this.p = p;

}

}

The rest of this class are classical get- and set-functions to provide a way of data access and compatibility

with different functions. This is primarily utilized to read the Montgomery points stored in the array, be-

cause these points are used to advance further in the isogeny graph.
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7.8 Main engine implementation of the SIDH/SIKE algorithm

The Engine class implements all previously explained classes and functions and calls everything according

to the SIKE algorithm in order to perform isogeny based cryptography. This class initializes and holds all

important values that are needed for to calculate the isogenic algorithms correctly.

import java.math.BigInteger;

import java.security.SecureRandom;

import com.github.aelstad.keccakj.cipher.CipherInterface;

import com.github.aelstad.keccakj.provider.KeccakjProvider;

import com.github.aelstad.keccakj.spi.Shake256Key;

import com.github.aelstad.keccakj.spi.Shake256StreamCipher;

import java.security.InvalidAlgorithmParameterException;

import java.security.InvalidKeyException;

import java.security.Security;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.crypto.BadPaddingException;

import javax.crypto.Cipher;

import javax.crypto.IllegalBlockSizeException;

import javax.crypto.spec.IvParameterSpec;

public class Engine {

public static final BigInt E2 =

new BigInt(new BigInteger("FA", 16).toString());

public static final BigInt E3 =

new BigInt(new BigInteger("9F", 16).toString());

e2 and e3 describe the finite field Fp2 , so that p = 2e2 ∗ 3e3 − 1. The values of e2 and e3 are given and

depend on the bit size and security that is needed in the isogenic graph based algorithm the field Fp2 is used

in.

public static final BigInt PRIME =

new BigInt(new BigInteger("4066F541811E1E6045C6BDDA77A4D01B9BF6C"+

"87B7E7DAF13085BDA2211E7A0ABFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"+

"FFFFFFFFFFFFFFFFFFFFFFFFFF", 16).toString());

The next value is the prime number that was described by e2 and e3. This number sets the boundaries for the

finite field Fp and Fp2 . In the SIKE submission there are three security levels with different bit sizes listed.

The first one is 503-bits long which, in terms of quantum cryptography, has the lowest quantum security but

96



7 SIKE-Java

also the lowest calculation time. The other two quantum-secure possible values are 751 and 964 bits. This

means, that there is a trade-off between security and performance and it heavily depends on the security need

and the type of application to correctly decide the bit size. In this implementation of the SIKE algorithm,

the 503-bit prime number is used. The algorithm works the same way with every other prime base field, but

the calculation time differs. Implementations in smaller devices or even smart cards require a longer thought

process and maybe need completely different starting values or a different amount of iterations. This heavily

depends on the use case and depends if confidential information needs to be stored short- or long-term.

public static final BigInt MINUSTWO = new BigInt("-2");

public static final BigInt MINUSONE = new BigInt("-1");

public static final BigInt ZERO = new BigInt("0");

public static final BigInt ONE = new BigInt("1");

public static final BigInt TWO = new BigInt("2");

public static final BigInt THREE = new BigInt("3");

The above static parameters are helper values to calculate the SIKE algorithm with the key exchange and

encapsulation. They provide lower calculations time and performance improvements, because the program

does not need to reallocate the same values over and over. Instead they are copied or red from already

existing memory space depending on the usage.

public static final Fp2 A = new Fp2(ZERO, ZERO);

public static final Fp2 B = new Fp2(ONE, ZERO);

public static final Fp2 FP2ONE = new Fp2(ONE, ZERO);

public static final Fp2 FP2ZERO = new Fp2(ZERO, ZERO);

public static final Fp FPZERO = new Fp(ZERO);

public static final Fp FPONE = new Fp(ONE);

public static final Point INFINITE = new Point(A.copy(), A.copy());

The static point allocations above reuse the static parameters and link them via pointers. This saves memory

space and allocation time, because the BigInt value-arrays already exist in memory.
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public static final Point P2 = new Point(

"1F6D52A7563BB9356B98A116A0CA9775DBB7382EB29E24E45299D8939959EAE"+

"EB47FF3113F60882D12103E4B8B8CD2B97DA14657AE8C128BE82209D2DDFCA9",

"2D44C3FAD24E4CBDDC8A2D9DE336A92A9912EE6D09E2DD5C33AB26D60A268AC"+

"91F38E1AF4C2D5BFA2B87DD55C8CA6019C6B0C08ED92B5AEB6C65A8E06E53E9",

"3C9F7C397283C0871F78D9F74ECC0A8F89579CCBEF8FE60D07338AF0A0322E3"+

"F0C66CA826AA5BF85EB53666C272C8EAEC9B808B3B78E6422330617AC23D6F2",

"38222AE95DA234ABD1B90FD897C2E2E7995B2C0006DC92CC079B7C60C94DCAE"+

"9961CC7A4BAEAC9D294F6D5760D4D654821193AE92AD42AC0047ADE55C343FC"

);

The first generator point P2, which is one of the four starting points is calculated the following way[39]:

• Define boundaries P2 ∈ E0(Fp2))

• Set x0 = i+ c ∈ Fp2

• Increment c until x0 is the smallest non-negative integer in Fp2 so that [2e2−1]P2 = (−3± 2
√
2, 0)

• Calculate y0 =
√
f(i+ c)

• Calculate (xP2 , yP2) = [3e3 ](x0, y0)

• The point P2 has exact order of 2e2 and forms a basis for E0(Fp2 [2e2 ])

public static final Point Q2 = new Point(

"21B7098B640A01D88708B729837E870CFF9DF6D4DF86D86A7409F41156CB5F7"+

"B8514822730940C9B51E0D9821B0A67DD7ED98B9793685FA2E22D6D89D66A4E",

"2F37F575BEBBC33851F75B7AB5D89FC3F07E4DF3CC52349804B8D17A17000A4"+

"2FC6C5734B9FCFDE669730F3E8569CEB53821D3E8012F7F391F57364F402909",

"78F8A30AB36B301BDF672D9E3518AF741F8227CC95A9F351B99623A826DE3F"+

"8D90DD6ED42FF298E394E77B7AEFEE6010CDF34A7DE9F9E239B103E7B3EEE",

"37F3C600488EBB6B11462C4CAFC41CD5DC611A9B0C804E3BF50D6D8F75C4E7A"+

"136E29E00D80EB8653CA830F2AED61D04F9F3A8317F7916E016F2733B828AC0"

);

The second generator point Q2 is calculated the following way[39]:

• Define boundaries Q2 ∈ E0(Fp2)

• Set x0 = i+ c ∈ Fp2

• Increment c until x0 is the smallest non-negative integer in Fp2 so that [2e2−1]Q2 = (0, 0)

• Calculate y0 =
√
f(i+ c)

• Calculate (xQ2 , yQ2) = [3e3 ](x0, y0)

• The point Q2 has exact order of 2e2 and forms a basis for E0(Fp2 [2e2 ])
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public static final Point P3 = new Point(

"97453912E12F3DAF32EEFFD618BD93D3BBBF399137BD39858CADEFAE382E42D"+

"6E60A62FD62417AD61A14B60DB26125273EC980981325D86E55C45E3BB46B1",

"0",

"9B66640A4CC79F82B68D72609233812DF76E8B0422EF3527A1F2A9915EFF16E"+

"0940040DF4A15A84A5ACF024FC2ED8A50102A731E8D20D033B48035B63DD62",

"0"

);

The third generator point P3 is the first point to have a zero value in the imaginary axis and is calculated the

following way[39]:

• Define boundaries P3 ∈ E0(Fp2) \ E0(Fp)

• Set x0 = c ∈ Fp

• Increment c until f(c) is the smallest non-negative square in Fp

• Calculate y0 =
√
f(c)

• Calculate (xP3 , yP3) = [2e2−1](x0, y0)

• The point P3 has exact order of 3e3 and forms a basis for E0(Fp2 [3e3 ])

public static final Point Q3 = new Point(

"1E7D6EBCEEC9CFC47779AFFD696A88A971CDF3EC61E009DF55CAF4B6E01903B"+

"2CD1A12089C2ECE106BDF745894C14D7E39B6997F70023E0A23B4B3787EF08F",

"0",

"2EC0AAEF9FBBDD75FBDA11DA19725F79E842FBC355071FD631C1CDF90E08E60"+

"1929FAEC5DAEB0D96BBB4AD50FC7C8AD47064F05C06DC5D4AAE61CCCEFF1F26",

"0"

);

The fourth and last generator point Q3 is the second point to have a zero value in the imaginary axis and is

calculated the following way[39]:

• Define boundaries Q3 ∈ E0(Fp)

• Set x0 = c ∈ Fp

• Increment c until f(c) is the smallest non-negative non-square in Fp

• Calculate y0 =
√
f(c)

• Calculate (xQ3 , yQ3) = [2e2−1](x0, y0)

• The point Q3 has exact order of 3e3 and forms a basis for E0(Fp2 [3e3 ])
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The genRandom function is a pseudo-random number generator that uses the Java BigInteger class to gener-

ate a random value. This random value is used to randomize the key exchange and generate random values

for the quadratic non-residue check. The main problematic with this function is, that it utilizes the Big-

Integer class and this is an unwanted dependency. This is why this function needs to be exchanged with

random value function existing on the platform this SIKE algorithm is used on. For example a Java smart

card needs to utilize random functions, that are available on the hardware itself and remove this dependency.

For legacy and testing reasons this function is included here since it serves an important functionality for

the whole program.

The function itself generates random values up to the same bit length as the boundary, which is the prime

number, until the value generated is strictly less than the boundary value. An average expected number of

calls to the BigInteger class, which always allocates a new object is less than two. This will always be faster

with hardware implementations of random number generators.

public static BigInt genRandom() {

BigInteger bound = new BigInteger(PRIME.toString());

SecureRandom rnd = new SecureRandom();

int numBits = bound.bitLength();

BigInteger randval = new BigInteger(numBits, rnd);

while (randval.compareTo(bound) >= 0) {

randval = new BigInteger(numBits, rnd);

}

return new BigInt(randval.toString());

}
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7.8.1 Main SIDH-Algorithm

The next part of the main Engine class consists of server function that execute all functions to fully compute

the SIDH-Algorithm, a public key encryption with isogenies and the key exchange mechanism.

public Engine(){

MathR mr = new MathR();

Fp sk2 = mr.sk_keygen_2();

Fp sk3 = mr.sk_keygen_3();

PublicKey pk2 = mr.isogen_2(sk2.getValue());

PublicKey pk3 = mr.isogen_3(sk3.getValue());

Fp2 j_invariant2 = mr.isoex_2(sk2.getValue(), pk3);

Fp2 j_invariant3 = mr.isoex_3(sk3.getValue(), pk2);

if(j_invariant2.equals(j_invariant3)){

System.out.println("SIDH working correctly");

}else{

System.err.println("SIDH not working correctly");

}

}

}

The main SIDH-Algorithm executes the keygen functions sk_keygen2 and sk_keygen3 to generate two se-

cret keys (sk2,sk3) which represent the secrets for two SIDH participants. These secret keys are used by 2e-

and 3e-isogenies. Afterwards these secret keys are utilized to generate the public keys pk2 and pk3 with the

respective isogenic functions isogen_2 and isogen_3. After these calculations, two isogenic key pairs exist

and are used to calculate the key exchange where one party uses isoex_2 with the values sk2 and pk3 and

the other party uses isoex_3 with the values sk3 and pk3. Both calculations should yield the same j-invariant

which means, that the key exchange has been calculated successfully.
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7.8.2 Public-Key-Encryption algorithm implementation

The next part of the main engine focuses on the Public-Key-Encryption(PKE) and the Key-Encapsulation-

Mechanism(KEM). The KEM works very closely with the PKE and utilizes some of its parts to encrypt data

in the Encapsulation.

public Transfer gen_pke() {

Fp sk3 = mr.sk_keygen_3();

PublicKey pk3 = mr.isogen_3(sk3.getValue());

return new Transfer(sk3, pk3);

}

The gen_pke function generates a new keypair with a secret and a public key that are used in the Public-

Key-Encryption.

public Transfer enc_pke(PublicKey pk3, byte[] data) {

Fp sk2 = mr.sk_keygen_2();

PublicKey c0 = mr.isogen_3(sk2.getValue());

Fp2 j = mr.isoex_2(sk2.getValue(), pk3);

Security.addProvider(new KeccakjProvider());

CipherInterface ci = new Shake256StreamCipher();

Shake256Key key = new Shake256Key(j.toByteStream());

byte[] nonce = new byte[256];

IvParameterSpec ivParameterSpec = new IvParameterSpec(nonce);

The first part of the Public-Key-Encryption generates a 2-isogeny key pair and a shared secret which is a

j-invariant. This j-invariant serves as the key in the stream cipher that encrypts the data. The encryption hap-

pens with Shake256[75]. The NIST implementation does not force developers to use Shake256 and leaves

the encryption-, hash- and digest-method up to the developer to decide. Because NIST uses Shake256 this

implementation tries to implement this as close to the guideline as possible.

try {

ci.init(Cipher.ENCRYPT_MODE, key, ivParameterSpec);

byte[] c1 = ci.doFinal(data);

return new Transfer(c0, c1);

} catch (InvalidKeyException ex) {

Logger.getLogger(MathTester.class.getName()).log(Level.SEVERE,

null, ex);

} catch (InvalidAlgorithmParameterException ex) {

Logger.getLogger(MathTester.class.getName()).log(Level.SEVERE,

102



7 SIKE-Java

null, ex);

} catch (IllegalBlockSizeException ex) {

Logger.getLogger(MathTester.class.getName()).log(Level.SEVERE,

null, ex);

} catch (BadPaddingException ex) {

Logger.getLogger(MathTester.class.getName()).log(Level.SEVERE,

null, ex);

}

return null;

}

The last part of the function calls the correct stream cipher and encrypts the data. The values c0, which is

the public key and the value c1, which is the encrypted data, is returned to the caller via the Transfer class.

public byte[] dec_pke(Fp sk3, PublicKey c0, byte[] c1) {

Fp2 j = mr.isoex_2(sk3.getValue(), c0);

Security.addProvider(new KeccakjProvider());

CipherInterface ci = new Shake256StreamCipher();

Shake256Key key = new Shake256Key(j.toByteStream());

byte[] nonce = new byte[256];

IvParameterSpec ivParameterSpec = new IvParameterSpec(nonce);

try {

ci.init(Cipher.DECRYPT_MODE, key, ivParameterSpec);

} catch (InvalidKeyException ex) {

Logger.getLogger(MathTester.class.getName()).log(Level.SEVERE,

null, ex);

}

byte[] data = ci.doFinal(j.toByteStream());

return data;

}

The decrypt function does the exact reverse operation compared to encrypt function. It takes the secret key

sk3 from the other party and the public key c0 along with the encrypted data c1 as input. With the secret

key sk3 and the public key c0 a new j-invariant is being calculated. This j-invariant is the same as the one

that was used for encrypting the data. It then calculates the original data by utilizing Shake256 with the new

j-invariant. The function returns the original data to the caller.[39]
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7.8.3 Key-Encapuslation-Mechanism algorithm implementation

public Transfer gen_kem() {

Fp sk3 = mr.sk_keygen_3();

PublicKey pk3 = mr.isogen_3(sk3.getValue());

return new Transfer(sk3, pk3);

}

The gen_kem function generates a new keypair with a secret and a public key that are used in the Key-

Encapsulation-Mechanism.

public Transfer enc_kem(PublicKey pk3) {

BigInt m = Engine.genRandom();

Security.addProvider(new KeccakjProvider());

CipherInterface ci = new Shake256StreamCipher();

Shake256Key key = new Shake256Key(m.toByteStream());

byte[] nonce = new byte[256];

IvParameterSpec ivParameterSpec = new IvParameterSpec(nonce);

try {

ci.init(Cipher.ENCRYPT_MODE, key, ivParameterSpec);

byte[] r = ci.doFinal(pk3.getBytes());

} catch (InvalidKeyException ex) {

Logger.getLogger(MathTester.class.getName()).log(Level.SEVERE,

null, ex);

} catch (InvalidAlgorithmParameterException ex) {

Logger.getLogger(MathTester.class.getName()).log(Level.SEVERE,

null, ex);

}

Transfer t = enc_pke(pk3, r)

PublicKey c0 = t.getC0();

byte[] shared_secret = ci.doFinal(c0.toByteStream());

t.setSs(shared_secret);

return t;

}

The Key-Encapsulation-Mechanism performs a transformation according to Hofheinz, Hövelmanns and

Kiltz[76] with some variations. The algorithm uses Shake256[75] to encapsulate and decapsulate the key.

The function starts by generating a random value m that is then used as the encapsulation key for the public

104



7 SIKE-Java

key pk3. The existing public key is then sent into the Public-Key-Encryption method to receive an encrypted

public key where the encapsulated bits serve as the key. After that step, the algorithm applies a second layer

of security by running the stream cipher again with the encrypted and encapsulated public key. The output

of this function serves as a shared secret. The public key c0, the encrypted data c1 and the shared secret

shared_secret are returned to the caller.

public byte[] dec_kem(byte[] s, Fp2 sk3, PublicKey pk3, PublicKey c0,

byte[] c1) {

byte[] m = dec_pke(sk3, c0, c1);

Security.addProvider(new KeccakjProvider());

CipherInterface ci = new Shake256SteamCipher();

Shake256Key key = new Shake256Key(m);

byte[] nonce = new byte[256];

IvParameterSpec ivParameterSpec = new IvParameterSpec(nonce);

try {

ci.init(Cipher.ENCRYPT_MODE, key, ivParameterSpec);

byte[] r = ci.doFinal(pk3.getBytes());

} catch (InvalidKeyException ex) {

Logger.getLogger(MathTester.class.getName()).log(Level.SEVERE,

null, ex);

} catch (InvalidAlgorithmParameterException ex) {

Logger.getLogger(MathTester.class.getName()).log(Level.SEVERE,

null, ex);

} catch (IllegalBlockSizeException ex) {

Logger.getLogger(MathTester.class.getName()).log(Level.SEVERE,

null, ex);

} catch (BadPaddingException ex) {

Logger.getLogger(MathTester.class.getName()).log(Level.SEVERE,

null, ex);

}

PublicKey c0_1 = mr.isogen_2(new FP(r))

byte[] ss;

if (c0_1.equals(c0)) {

ss = ci.doFinal(c0_1.getBytes());

} else {

Shake256Key key = new Shake256Key(s);

ci.init(Cipher.ENCRYPT_MODE, key, ivParameterSpec);
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ss = ci.doFinal(c0_1.getBytes());

}

return byte[] ss;

}

The final function dec_kem takes care of the decapsulation and decryption of the key. It takes the encrypted

secret s, the secret key of one party sk3, the public keys pk3 and c0 and encrypted data c1 as input. In

the first step, the encrypted data is decrypted to receive back the random value m, that was generated in

enc_kem. The decrypted value m is then used in the stream cipher as the capsulation value for the public

key c_0’ to generate the same r that is used in the isogenic calculation. The last part can go two different

ways. When the 2-isogeny public key c_0’ is the same as the 2-isogeny public key parameter c_0, the fi-

nal shared secret is received by either decrypting the the value m or the second isogeny byte stream c_0’.[39]

7.9 Transfer class implementation

The transfer class does dataholding operations for the interactions between the Key-Encapsulation-Mechanism

and the Public-Key-Encryption.

public class Transfer {

private Fp sk3;

0 private PublicKey pk3, c0;

private byte[] c1, ss;

The class can hold secret keys in the form of an Fp object, two public keys and a shared secret in the form

of a byte array.

public Transfer(Fp sk3, PublicKey pk3) {

this.sk3 = sk3;

this.pk3 = pk3;

}

public Transfer(PublicKey c0, byte[] c1) {

this.c0 = c0;

this.c1 = c1;

}
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public byte[] getSs() {

return ss;

}

public void setSs(byte[] ss) {

this.ss = ss;

}

public PublicKey getC0() {

return c0;

}

public void setC0(PublicKey c0) {

this.c0 = c0;

}

public byte[] getC1() {

return c1;

}

public void setC1(byte[] c1) {

this.c1 = c1;

}

public Fp getSk3() {

return sk3;

}

public void setSk3(Fp sk3) {

this.sk3 = sk3;

}

public PublicKey getPk3() {

return pk3;

}

public void setPk3(PublicKey pk3) {

this.pk3 = pk3;

}

}

The rest of the class are generic setter- and getter-methods for data input and ouptut and constructors to

allocate data with the object creation.
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Good performance and fast computational speed is an important property of any cryptographic system. This

is also a downside of post-quantum cryptography, since most of the mathematical operations, that are used

in post-quantum cryptography generates a much higher load than conventional cryptographic systems. This

is why it is of utmost importance to find a system that is able to fulfill the following properties:

• High quantum security

• Small key-sizes

• Small signature sizes

• Low memory demand

• Fast calculation speed

Finding a system that fits all properties while being secure is a hard task and that’s why NIST and compara-

ble organisations have a call for papers to motivate researchers and to further advance the field of quantum

cryptography.

The Java implementation has the advantage that it is very versatile and mobile and can run on any system

that has the JRE(Java-Runtime-Environement) installed. This comes with a performance hit in calculation

speed and memory usage. That’s why this implementation takes advantage of optimized algorithms and

a fast big number allocation library. The main performance hit takes the generation of random numbers,

because the PRNG(Pseudo-Random-Number-Generator) needs to do multiple iterations to generate correct

sizes according to Fp and Fp2 . The following measurements have been taken on an i7 6700HQ 2.6 GHz

processor with four processing cores. It is important to note, that no JVM(Java-Virtual-Machine) optimiza-

tions and no code parallelisation or multithreading is being used.

• SIKE-Keygen: 200ms for the prime base SIKEp503

• SIKE-Key-Exchange: 40ms in the best case
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Authentication with isogenies is a topic that researchers have rarely considered, as the signatures were too

large and the speed too slow compared to other post-quantum authentication systems. However, there was a

big improvement with SeaSign[31], a new authentication scheme based on CSIDH, the group-based version

of SIDH. SeaSign and authentication systems in general should be more focused on research. Therefore,

many scientific papers on isogenic authentication are currently being written, as SeaSign, among others,

seems to be really promising. In 2017, most people in this research field said that authentication systems

will remain impractical. With SeaSign this could change quickly. While it is still slow and the security

of CSIDH and SeaSign is unclear, more and more progress is being made. Both authentication schemes,

CSIDH and SeaSign, will be explained more detailed in the next chaopters.

9.1 Authentication scheme based on SIDH

The first authentication scheme is a proposal from Galbraith, Petit and Silva from the year 2016 [23]. It

describes two different authentication schemes, the older one from De Feo, Jao and Plût [17], and their

new scheme based on an algorithm of Kohel et al. [77]. For the second scheme they use a quaternions,

which are numbers that extend the complex numbers on the 4-dimensional plane. They proposed, that both

authentication schemes are unforgeable in the classic random oracle model and in the quantum random

oracle model. The comparison of both schemes has proven, that the De Feo scheme is more efficient

although the new scheme from Galbraith, relies on more difficult computational problem.

9.2 Authentication scheme based on CSIDH

This second type of authentication scheme is quite new and bases its algorithm on CSIDH, the group based

version of SIDH. The first interesting proposal came from De Feo and Galbraith[31]. They called it SeaSign,

because CSIDH is spoken as sea-side. It combines the class group actions with the notion of Fiat-Shamir.

This allows to have signature size of less than a kilobyte, while still having 128-bit security level. That

109



9 Authentication schemes with isogenies

comes with a slow down in speed and increases the signing and verification times to around 2-3 minutes.

They state, that they didn’t try to speed it up and they just wanted to make the signature as small as possible.

So a speed up in the near future is expected.
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The last part of this thesis focues on the security and the related main mathematic principles that underlies

SIDH. This chapter summarizes the works of [17] and [24].

Public Parameters:

• A prime P

• A supersingular elliptic curve E over Fp2

• Four points on E ⇒ Pa, Pb, Qa, Qb

Private Parameters:

• Four random generated integers xa, ya, xb, yb

• Isogenies φA and φB

Shared Parameter:

• j-invariant of Eba

Definition 1. Given a field K and two supersingular elliptic curves over K such that |E1| = |E2|, compute

an isogeny φ : E1 7→ E2

This isogeny is not unique, so the best representation is a pair of rational maps or a kernel which takes

exponential time for both parties to calculate. One party can also represent an isogeny as a composition

of multiple low degree isogenies, which can be calculated in polynomial time. This problem was stated in

many papers beforehand. In the De Feo-Jao scheme it requires computing isogenies of degree ` for a small

fixed prime `.

Definition 2. Given an elliptic curve E over a finite field K, compute its endomorphism ring.

Another problem is the computation of the endomorphism ring of an elliptic curve. This was first shown by
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Kohel [78] in 1996. He proved that in the supersingular case, a probabilistic algorithm is running in time

O(p). Three years later, Galbraith [79] showed that given the birthday paradox it can even run in O(
√
p).

It still depends on the implementation, because for some curves it is still easy to calculate, but on average it

is considered a serious problem. The problem that Rostovtsev and Stolbunov [18] had with their proposal

in 2006 was the use of a commutative structure, where one can find a subexponential-time quantum algo-

rithm [20]. However, the Jao-De Feo scheme is not vulnerable to that, because supersingular curves are

non-commutative. That’s the reason why there is a need for the auxiliary points, to get around the problems

of non-commutativity. These could lead to attacks on the exchange scheme if one party uses a static key.

This is why SIKE [39] and CSIDH [30] were invented. Some could perform a "small subgroup" or "invalid

curve" attack which were proposed for DLP(Discrete-Logarithm-Problem) cryptosystems [80].

Active attacks and validation methods. Standard attacks on cryptosystems are active attacks that abuse

static private keys. They are also known to attack methods based on the logarithm problem, where a user

can be used as an oracle. The idea behind this is to learn something about the secret key of Alice (a1, a2)

using a known E′. The concept of "validation" is to prevent active attacks. In the context of supersingular-

isogeny crypto-systems, the validation of (E,P,Q) should test that E is a supersingular curve and P and Q

are on the curve in the correct order and P and Q are independent. One of this methods is the Kirkwood-

Validation-Method [81]. It is built around the idea of using the randomness in the protocol to check that the

protocol has performed correctly.

Importance of correct isogenies. As stated before, there are infinite isogenies from E to EA. However, the

Jao-De Feo system proposes the correct isogeny to calculate. This follows from the fact thatE/〈GA, GB〉 =

EA/〈φA(GB)〉 = EB/〈φB(GA)〉. So φA/GB() and φB(GA) can be computed. An approach for an attacker

to get to EBA, is to compute φB(ker(φ′)) hence an isogeny from EB with this kernel. But the attacker has

no knowledge about these points, so he can only calculate φB(ker(φ′)) if ker(φ′) ⊆ 〈PA, QA〉. A random

isogeny φ′ is unlikely to have this property. It is a main aspect, for computing the key, to reduce the

computing of the endomorphism ring. All known algorithms to compute an isogeny from E to EA, given

end(E) and end(EA), are not likely to result in the correct degree isogeny.
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11.1 Conclusion

In this thesis we have dealt with the problem of quantum computers and that they pose a great threat to

modern communication and cryptography. One of the main contributions of our work is to provide a guide

for the implementation of the SIKE protocol and a basis for understanding the mathematics based on it. The

literature analysis provides a good overview of the current state of the art and historical facts required to

understand SIKE. We have also added a short chapter on quantum computers and public-key cryptography

to make it easier to understand. The most important part was the implementation, in which several different

adjustments and improvements to the SIKE algorithm were made. These changes are described in great

detail with a comprehensive explanation. Although Java may not be the go-to language for implementing

SIKE, it shows that the basic problems of Java can be solved by adding more functions and libraries, writing

different algorithms, and removing some dependencies. The paper mentions how Java can be used more

efficiently and how computing times can be shortened with these enhancements. This gives readers a better

grasp of the limitations Java has in dealing with large numbers and provides alternative ways to deal with

them.

We have shown that the Java version is not as fast as implementations in C or Assembler, but the results

were surprisingly good. There remains enough optimization space to make further improvements in calcu-

lation speed, execution times and memory optimizations. The implementation of several math sections as

independent classes also allows them to be used as a library for future projects with isogenic cryptography.

This could be especially useful for developers who want to integrate post-quantum cryptography into their

programs. Many of these classes are very complex to understand, but the thesis gives guidance on their

use and meaning in the algorithm. The mathematical part shows different calculations and gives visual and

textual examples to the reader.
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In the last part of the thesis there is a summary about the security of SIDH/SIKE and the most important

mathematical operations and structures on which the algorithm is based on. It presents the most important

security facts that will be important in the future. Until the final publication of this work in June 2019,

there was no known algorithm that would have contributed to the acceleration of the isogeny calculations.

SIKE also made it into the second round of the NIST standardization competition. To reach the second

round, safety was proven and the key variables proved to be the shortest of all KEM candidates. This also

explains the difference in authentication systems, which have greatly improved over the last 6 months. The

older systems had very large signature sizes and the calculation was very slow. Newer signature techniques

have shown that it is possible to have small signatures, although this has made the speed of signing and

verification even slower. After 5 years of intensive research, cryptography with isogenies has advanced a

lot and it is one of the most promising candidates to be used in the near future to ensure quantum computer

security.

11.2 Future prospects

In this thesis we investigated cryptography on the basis of the isogeny problem. Implemented versions

of SIKE already exist in real-world applications like TLS 1.3, but it is not foreseeable what kind of post-

quantum cryptography will be state-of-the-art in the future. SIKE’s Key-Enapsulation-Mechanism is a really

promising candidate and recent work has brought a huge improvement in performance and reduced comput-

ing time to 6.3ms. The signatures of isogenies are very large compared to other post-quantum algorithms

and have a long computation time. Therefore, Isogenies were not submitted for the authentication com-

petition. The last years have shown that the possibility to improve isogeny based cryptography still has

a high chance and there are further improvements possible. These improvements will result from code

optimizations and mathematical accelerations. However, the other post-quantum candidates should not be

underestimated. There will probably come a phase of realistic research where the bad ones are sorted out

and many researchers focus on improvements for the rest. Quantum IT security is a large area that will

increase in importance as larger quantum computers are built. This is the reason why there is still a great

need for research and improvement in the future to keep the digital world safe in a quantum computing era.
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