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Abstract

Finding or composing suitable media music often poses a serious challenge to me-

dia producers. Primarily low-budget productions like image videos, presentations

of SMBs, TV features in regional programmes or interactive media applications like

computer games often lack know-how and/or resources to have adequate media music

composed for the application in question. Subsequently, in many cases royalty-free

music libraries are employed as a fallback, which is why the resulting sound tracks

are often characterized by poor quality and recognition value.

Therefore, a large amount of thematic relevance and economic benefit lies in the

development of a tool that simplifies the automated generation of media music, in

order to produce – musically – richer sound tracks while at the same time staying

completely royalty-free.

Hence, this thesis investigates functions, impacts and possible taxonomies of me-

dia music and evaluates its emotional and semantic content. Subsequently, emotive

functions of media music are looked into more deeply, considering them one of the

most valuable factors for the categorization of this type of music. Moreover, a model

for the musical representation of emotional or affective states is introduced using

Russell’s circumplex model of affects [Rus80] and based on state-of-the-art research

on this topic [BW05, BW06, Bru07].

Within the second half of the thesis, algorithms suitable for automated composi-

tion of music are investigated, with a special focus on the ability to map the musical

parameters derived from the above-mentioned emotional model onto the algorithms’

input parameters. In addition, using the most applicable methods for automated

composition, a prototypical application is developed in Max/MSP, implementing a

user interface based on the circumplex model of affects and thus enabling smooth

temporal transitions between different emotional or affective musical expressions.
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Kurzfassung

Das Auffinden oder Komponieren von passender Medienmusik stellt für Medien-

produzenten oftmals eine nicht zu unterschätzende Herausforderung dar. Vor allem

Low-Budget-Produktionen, wie etwa Image-Videos, Präsentationen von KMUs, re-

gionalen TV-Sendungen sowie interaktiven Medienanwendungen wie z.B. Computer-

spielen fehlt es oft an Know-How und/oder Ressourcen, um adäquate Medienmusik

speziell für das jeweilige Produkt komponieren zu lassen. Aus diesem Grund wird

oft auf lizenzfreie Musikbibliotheken zurückgegriffen, was meist zu klischeehaften

Tonspuren mit geringem Qualitätsanspruch sowie Wiedererkennungswert führt.

Daraus ergibt sich die thematische und wirtschaftliche Notwendigkeit der Entwick-

lung eines Tools, das die automatisierte Generierung von Medienmusik ermöglicht,

und in der Lage ist, musikalisch interessante, abwechslungsreiche, und dennoch

lizenzfreie Tonspuren hervorzubringen.

Die vorliegende Diplomarbeit untersucht deshalb Funktionen, Wirkungen und mög-

liche Kategorisierungen von Medienmusik. Weiters werden emotionale Funktionen

von Medienmusik genauer analysiert, sowie ein Modell der musikalischen Repräsen-

tation von Emotionen oder Gefühlszuständen, welches auf Russells Circumplex Model

of Affects [Rus80] und modernsten Forschungsergebnissen zu dieser Thematik [BW05,

BW06, Bru07] basiert, vorgestellt.

In der zweiten Hälfte dieser Arbeit werden geeignete Algorithmen zur automa-

tisierten Komposition von Musik betrachtet. Dabei wird besonderes Augenmerk auf

die Eingabeparameter dieser Algorithmen, und deren Verwendbarkeit in Hinblick

auf die musikalischen Parameter des zuvor vorgestellten emotionalen Modells gelegt.

Des weiteren wird unter Verwendung der am geeignetsten erscheinenden Algorith-

men eine prototypische Applikation in Max/MSP entwickelt, deren User Interface

auf dem Circumplex Model of Affects basiert, und dadurch stufenlose Übergänge

zwischen unterschiedlichen durch Musik ausgedrückten Gefühlszuständen erlaubt.
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1. Introduction

1.1. Problem Definition

Creation and reception of music have altered in a drastic manner over the last 150

years. Before the invention of audio recording equipment such as the phonograph,

every sound event was bound to one specific moment in time - the time it was

performed. Literally, nobody was able to hear the same piece of music twice (see

[Eno96]). In the following decades, recorded sound became a mass media because of

the availability and popularity of recording devices and the possibilities they came

up with. It spawned a whole recording and broadcasting industry, and the number of

possible applications for recorded sound started growing exponentially (see [Win04],

p. 3).

However, with the advent of electronic music and sound synthesizers in the sec-

ond half of the 20th century, the habits of creating and consuming music underwent

another critical transformation. Suddenly, using techniques from human-computer-

interaction, the listener is in the position to directly influence the outcome of the

piece he is paying attention to. The composer of such a piece of music acts more like

a supervisor, only predefining certain structures and limitations to his work of art,

thus opening it to the audience and including the listener in the process of finalizing

the artifact (see [Ess91]). In this context, Atau Tanaka ([Tan06], p. 289) states that

“[...] interactive systems and networks are technologies that exhibit

this expressive, instrumental potential. The creative process is completed

when the listener enters the loop. It is only then that expression takes

place, as the sum total of the satisfaction lived out by artist, instrument,

and listener.”

Indeed computing power nowadays isn’t a serious problem anymore, and with up-

coming novel mobile devices, many implementations of generative approaches are

1



1 - Introduction

imaginable. For instance, sensory inputs such as accelerometers, temperature sen-

sors and related devices originate the development of interactive generative audio

applications such as RjDj 1 or Brian Eno’s Bloom2.

At the same time as the boom times of digital media took place, a whole new indus-

try engaging in the utilization of these new possibiltites was born. While it took the

classic media like film, radio, or television years to adapt to these conditions, other

communities, such as the world wide web, the computer gaming industry or multi-

media artists managed to pick them up and adopt them for their needs rather quickly.

Consequently, generative music approaches seem to slowly begin finding their way

into those so-called new media. Unfortunately, the attempts to adapt algorithmic

methods for their needs have been highly experimental thus far. Therefore, it seems

reasonable that research and development in this field have to be intensified in order

to result in true benefit for the media industry.

1.2. Motivation

Current research and development in the fields of generative music and algorithmic

composition indicate a great potential for these rather experimental forms of musical

expression to be used as the basis of an interactive tool for generating sound tracks

for media appliances. The need for such a tool derives from many media producers’

every day struggle – producing content at high quality and low cost at the same

time. While it seems to be common practice to employ royalty-free music libraries

for purposes such as overdubbing an image video, creating musical background for

a museum installation or generating a sound track for public presentations, the out-

come of such a project is often poor in quality and recognition value.

Particularly where sound design for interactive media is concerned, until now in

most cases audio loops are employed to populate the sound track. Often this hap-

pens out of lack of computer memory or because of outdated design patterns (or

those adopted from time-based media such as film or television without adaptation).

Nevertheless, mostly the results sound repetitive, and consequently boring, as the

1http://rjdj.me/
2http://theappleblog.com/2008/10/08/godfather-of-ambient-creates-iphone-app/

2



1 - Introduction

central concepts of dramaturgy – such as rises and falls of tension, or climaxes –

cannot be applied to the product in an adequate manner (see [Raf02], p. 295). The

ability to control small-scale as well as large-scale musicality would add considerable

individuality to such a multimedia product.

1.3. Relevance

In contemporary literature on this topic, it is often remarked that individual musical

experience is suffering from the ubiquitous ability to access and exploit music (see

[Tan06], p. 271). Similarly, it has been noted that due to the excess of music

omnipresent in the mass media, especially children’s understanding of music is more

and more shaped early by the influence of the musical mainstream conveyed by this

mass culture, and thus narrowed to a passive stage of pure consumption (see [Bur98],

pp. 249f). Recent game audio studies ([CGH06], p. 9) even conclude that

“the audio factors in games tend to act as background fillers.”

Among other approaches, adaptive or generative concepts are one means to address

this problem, as they involve the listener in the creation of the auditory content he

or she is confronted with.

Additionally, an even larger problem has to be solved: The huge amount of con-

tent produced, not only in the computer gaming industry (see [Far07], p. 76), but

also by legions of media producers and/or artists working on a low-budget basis

around the world, still needs a decent sound track.

1.4. Thesis Objectives

The following chapter focuses on media music, the fundamental principles of its

perception, functions and impacts, possible applications, as well as common design

patterns. By reviewing state-of-the-art research on the topic and analyzing relevant

literature, a possible generalized taxonomy for the categorization and description of

media music is developed.

In the third chapter, emotive functions of music are investigated more profoundly,

since they are considered to be one of the most valuable factors for the description

of music and contribute to the narrative content and style of media products to a

3



1 - Introduction

large extent. Useful parameters for emotional classification of musical material are

identified; furthermore, a model for the musical representation of affective states or

moods is developed which thereafter leads to the determination of prerequisites for

a prototype implementing generative techniques.

Afterward, several common algorithms suitable for the automated generation of mu-

sic are examined, focusing on the ability to map the musical parameters discovered

in the preceding chapter onto the input parameters of one of those algorithms, or a

combination of them. A special emphasis is put on the possibility to realize smooth

temporal transitions by altering the afore-mentioned input parameters.

Eventually, after reviewing related work in this research field, a prototype imple-

menting an optimized user interface based on Russell’s circumplex model of affects

[Rus80] is developed in Max/MSP3. It is meant to enable the user to intuitively

control the musical outcome in terms of its emotional or affective content. The in-

tention here is to devise a prototype that is capable of producing structural audio

information such as MIDI or OSC as an output, which can for instance be imported

into any digital audio workstation (DAW) – such as Digidesign ProTools4, Apple

Logic5 or Steinberg Cubase6 – or played back by any sound engine capable of doing

so, whereas it is not the aim of this thesis to construct a sound synthesizer that

produces audio output, e.g. in WAV or AIFF format, on its own.

The music created by the prototype is analyzed with respect to the question if it fits

the specified musical parameters. The aesthetical value of this music is then eval-

uated by a subjective critique as well as expert interviews, so as to clarify whether

the musical output indeed represents the emotions or moods it is intended to. The

thesis concludes with a closing evaluation of the research questions introduced in

this chapter, as well as remarks on future work that is to be performed on this topic.

3http://www.cycling74.com/products/max5
4http://www.digidesign.com/index.cfm?navid=349&langid=100&itemid=33116
5http://www.apple.com/de/logicstudio/
6http://www.steinberg.net/de/products/musicproduction/cubase4 product.html
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2. Music for Media Applications

2.1. Applications

To encompass the field of media music, and to provide the background for a more de-

tailed examination of perceptional concepts, functions and design patterns, it seems

advisable to begin this chapter with an outline of its possible applications. Charac-

teristics and design issues of those applications are investigated, as well as possible

starting points for generative approaches.

2.1.1. Auditory User Interfaces and Displays

Auditory user interfaces are human computer interfaces which employ audio signals

to provide feedback and user guidance. Quite similar, auditory displays are devices

which primarily use sonic events to communicate relevant content (see [Raf02], pp.

288f). It has to be remarked, though, that both terms are used ambiguously in

literature, and many concepts seem to coincide.

Both appliances use Auditory icons and Earcons1 to transport user information.

Especially earcons could benefit from the additional value of emotionally designed

content (see [Raf02], p. 289). Thus, for example it could be ensured that auditory

displays do not sound enervating when they should in fact calm down the user, but

at the same time are clearly perceivable (see [Raf02], pp. 292f). Furthermore, re-

active approaches to auditory user interfaces could raise the user’s immersion and

participation in the respective application (see [Win98], p. 297).

2.1.2. Infotainment / Advertainment / Edutainment

In the past two decades, multimedia systems have achieved general acceptance as a

platform for the distribution of information, be it in a commercial, educational or

1see glossary entries
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2 - Music for Media Applications

cultural context. Numerous examples of image videos, museum installations, inter-

active gaming appliances (e.g. iFUN2) and multimedia-based product presentations

display the potential of audio-visual techniques to efficiently communicate whatever

content in an entertaining way.

Generative approaches could add an additional feeling of variation to the musical

sound track of such products in order to avoid repeating sequences, and to add to

their perceived realism (see [Win98], pp. 296f). A disadvantage could be the fact

that by doing so, the informational content could be corrupted or subjectified.

2.1.3. Reactive and Interactive Media Applications

In the recent past, reactive and interactive media applications have gained popularity

by being used as public platforms for info-/advertainment (see above), or personal

entertainment systems, such as RjDj 3.

The world wide web, even though it could be considered the prototypical inter-

active media, lacks a coherent system of audio design patterns. Many websites or

web applications feature a sound or musical design which can be turned off by the

user. Even though this seems to be a usable feature, it also indicates that the audio

design used in such applications isn’t as elaborate as it could be (see [Raf02], p. 296).

Computer games, though a comparatively old application of interactive media tech-

niques, are also worth being studied concerning their formal dramaturgical design,

which of course differs widely from that of traditional, linear screen-based media (see

[Raf02], pp. 294f).

In such non-linear media, mostly audio loops are used to form the sound track

out of lack of computer memory (see [Raf02], pp. 295f). In the special case of music

this approach entails the danger of leading to monotonous and repetetive tracks.

On the other hand, an adaptive approach towards music production can result in

dramaturgically more sophisticated applications (see [Raf02], p. 297 and [BH07], p.

142).

2http://www.ifun.at/
3http://rjdj.me

6



2 - Music for Media Applications

2.2. Perception of Media Sound Tracks

When reflecting on functions and impacts of products designed for auditory (or

audio-visual) consumption, it seems critical not to omit the possibilities and limi-

tations that the human sense of hearing brings about. The following introductory

observations concerning state-of-the-art research on auditory perception are intended

to serve as a basis for further contemplations on the structure of media sound tracks

and the resulting consequences for media music.

2.2.1. Relevant Qualities of Human Auditory Perception

Observing the perception of musical content, it is inevitable to study the basic princi-

ples of auditory perception and the consequences that derive from them. The human

ear, quite contrary to the eye, is a passive sense organ, which itself is immovable,

barely directional and cannot be closed (see [Sch97], p. 31). As a direct consequence,

a large part of auditory perception takes place rather unconsciously (see [Raf02], p.

249), even during the sleeping period. According to film sound designer Walter

Murch (see [Mur05b] and [Sch97], p. 34), the human sense of hearing is even the

first one to be activated in an unborn, embryonal state.

Furthermore, the ear is directly linked with parts of the diencephalon: the thalamus

and the limbic system, both responsible for the evocation of feelings and emotions

(see [Sch97], p. 31), which is why acoustic impressions can also directly cause so-

matic reactions (see [Raf02], p. 250 and [Chi94], p. 34). Considering prehistorical

circumstances, this does not come as a surprise, since hearing was the only sense

capable of warning you against the threat of an animal attacking from behind.

Moreover, sound events are perceived in a multi-dimensional manner, which has

drastic consequences for media products, because several sound tracks can be super-

imposed upon each other without becoming unintelligible: movie characters’ dialogue

can be understood while music is played in the background and street ambience de-

fines their surroundings (see [Raf02], pp. 350f). Regarding music as a special audio

event, it is for instance possible to express several different emotional states, or

moods, in one piece of music (see [Sch97], p. 32).

7



2 - Music for Media Applications

Taking all these factors into account, it almost stands to reason that hearing leads

to an emotional and unconscious comprehension of the surrounding world. Thus,

auditory perception conveys an image of the inner (i.e. emotional or material) state

of lifeless as well as alive objects (see [Sch97], p. 31). The primal nature of hearing

is also the reason why human beings instinctively rely on aural impressions as op-

posed to visual ones when their contents differ from each other. In the hands of a

sound designer or composer, this becomes a powerful tool, because the meaning of

certain images can be directly influenced by sound (see [Chi94], p. 34), particularly

by music (see [Sch97], p. 34).

2.2.2. Auditory Perception Modes

As mentioned above, auditory perception occurs anywhere and anytime, actively

and passively, multi-dimensionally, emotionally and rationally. In contemporary

literature on this topic, there have been several efforts to combine the relevant aspects

into modes, of which the most notable ones are outlined in this section.

Listening Modes (Schaeffer / Chion)

The way in which human beings listen to sonic events, or rather how they afterwards

describe what they have heard, strongly depends on the intellectual immersion with

which the subject is contemplating the sound at hand.

In this context, Michel Chion ([Chi94], p. 25) postulates that

“[...] there are at least three modes of listening, each of which addresses

different objects.”

This section will include an overview of those three modes, and an evaluation re-

garding the impacts on the special case of music.

Causal Listening The purpose of listening causally to a sound is, in the first place,

to obtain information about the source and its composition. In many cases,

the characteristics of a sound produced by a well-known source can provide

additional details necessary to interpret it correctly (see [Chi94], pp. 25f).

However, this type of listening underlies some considerable limitations: Ob-

jects that sound similar or belong to one class of objects - such as dogs, or

8
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vacuum cleaners - are grouped unconsciously and merged into categories; a

typical listener may even not be able to tell a bulldog’s bark from that of a

poodle anymore. Thus, in identifying the cause of a sound, we tend to abstract

from the unique to the general (see [Chi94], p. 26). In very ambiguous cases,

we even settle for only connecting a sound to the general nature of its cause,

e.g. animal sounds, human sounds, mechanical sounds, and so on.

Furthermore, a sound mostly consists of more than one single source. Re-

garding musical instruments, for example, there is mostly an exciting part and

an oscillating part involved in the process of generating sound (see [Chi94], p.

28). Thus, the process of identification becomes multi-dimensional, involving

the recognition of each part of the source.

An important implication of these features is that especially in movies there

is a large potential of manipulating the causal listening mode under the limi-

tations that the phenomenon of Synchresis4 brings about (see [Chi94], p. 28).

There, in many cases, we identify causes of sounds that actually are not their

causes – the most obvious example for that would be that of science-fiction

movies, where we are often dealing with objects that do not even exist, like

space ships or laser guns, yet possess a typical sound.

Semantic Listening Whenever knowledge of a code or language is necessary to in-

terpret an acoustic event, semantic listening takes place (e.g. speech, Morse

code or similar forms of communication). The most characteristic attribute of

this listening mode is that the interpretation of sonic events happens differen-

tially. That is to say, when receiving and deciphering a coded message, the

specific acoustic properties are largely ignored, only differences between sounds

are examined and used to identify for example a certain word (see [Chi94], p.

28). Semantic listening applies to music regarding cultural differences: differ-

ent cultures have developed various languages of music (see [Mur05a]), as have

different media applications. In radio, television and advertising, for example,

different musical gestures evolved that carry a certain meaning (e.g. radio jin-

gles, audio logos, series signations and so on). Certainly, such structures can

only emerge by educating the audience in order to enable them to decipher the
4see glossary entry
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semantic code. Any human being who isn’t familiar with the common codes

included in the music of television or radio commercials, for example, will not

hear any meaning enclosed in it. Because of the intention to design a proto-

typical generative application suitable for any kind of media music, semantic

listening considerations are not taken into account in the following chapters.

Reduced Listening In the last listening mode proposed by Chion, the attention of

the listener is drawn upon the characteristics of the sound itself, instead of

its cause or its meaning. The sound is thus reduced to its signal properties,

and suddenly most listeners find it hard to describe what they hear without

employing its source, meaning or effect (see [Chi94], p. 29). Indeed, it seems

evident that verbal taxonomies used for the classification of sounds either refer

to their causes or impacts, or use musical terminologies that aren’t apt for this

kind of categorization (see [Chi94], p. 31).

Therefore, to support efforts of strengthening reduced listening as a technique

for analyzing auditory content, a novel type of terminology is required, em-

phasizing on sound-inherent qualities. What pertains to music, or sound art

in general, is that the aesthetic as well as emotional value of a sound is closely

linked to its timbre and texture rather than to the causal description attached

to it (see [Chi94], p. 31).

Emotional vs. Rational Perception

One of the central questions of sound design and music is, how many different high-

level sonic structures can be perceived and interpreted simultaneously. At first, one

might think of an acoustic event’s signal spectrum as a meaningful parameter, as it

defines a sound’s timbre and makes it identifiable. However, human beings are able

to distinguish between several sound sources that have similar spectral characteris-

tics. For example, different instruments that have a similar tonal range (e.g. violins

and flutes) can easily be identified by a human listener. On the other hand, when

there are more than two such structures involved, as in an orchestra, they merge

into one higher-level unit (see [Raf02], p. 259). Film sound designer Walter Murch

therefore stated that approximately 2.5 high-level sonic structures, called streams,

are discriminable under normal circumstances (see [Mur05a]).

10
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In this context, Murch proposes an alternative classification of sonic events into

encoded and embodied sounds (see [Mur05a]). Encoded sounds have to be decoded

rationally after their reception, they don’t convey any message unless the receiver

knows how to decipher the encoding5 – think of speech, for example, with the gram-

mar and vocabulary attached to a specific language (see [Raf02], p. 259). The

meaning of embodied sounds (for example, music), on the other hand, can be un-

derstood directly and intuitively, by using emotional categories.

The majority of acoustic events is of course situated somewhere between these two

poles. Apart from entirely neutral sounds that can be regarded as their central point,

there are many hybrid structures surrounding us in everyday life. Some sonic events

do carry a certain coded message, such as the ringing of a telephone or the sound

of a siren, whereas others, like animal sounds or church bells, are perceived more

instinctively and interpreted emotionally (see [Raf02], p. 260).

An important consequence from these findings is, that when the sound tracks of

a media product are evenly spread between embodied and encoded sounds, the

maximum amount of discriminable streams can be extended to approximately 5 (see

[Mur05a]). As might be expected, this contributes to an effect that we experience in

movies every day: We are able to listen to dialogue, sound effects, ambient sounds

and background music at the same time, without any difficulty to understand and

intepret these different levels of acoustic communication.

2.2.3. Acousmatic Sound Perception

Another intrinsic feature of sound accompanying almost any media product, is that

of acousmatic sounds and how they are perceived and interpreted. The term acous-

matic is meant to define a sonic event whose source you cannot see (see [Sch67], pp.

91-99), which of course relates to most audio-visual artifacts. Media such as radio,

compact disc or telephone are all regarded as being acousmatic (see [Chi94], p. 71),

as the originating cause of sound cannot be seen by the recipient. Regarding film

or television, every sound whose source is acting off-screen, is acousmatic by defi-

nition, which obviously also includes music underscoring what can be seen on the

screen. Only very rarely, there is a visible source of music; nevertheless film music

5The concept of encoded sounds is of course closely related to Chion’s above-mentioned semantic

listening mode, and all its consequences.
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is completely accepted by the audience as an inherent part of the movie that can

have a significant impact to the film’s narrative, even though it does not belong to

the diegesis6.

Many functions of media music that are described in this chapter derive the power

they exert on the listener from this phenomenon. Music accompanying a motion

picture according to Chion ([Chi94], p. 81) is

“a little freer of barriers of time and space than the other sound and

visual elements.”

Music can even switch from the non-diegetic to the diegetic realm at a moment’s

notice (imagine a piano player appearing on the screen after he or she has started

playing) without any difficulty for the audience to integrate this experience with

the ongoing storyline (see [Chi94], p. 81). Eventually it can be stated that it is

the atypical characteristics adhering to acousmatic sound perception that allow for

several specific effects of media music which will be elaborated on in the following

sections.

2.3. Value Added by Music

What value, or in what way value can be added to an audio-visual product is de-

fined by how much the music layer correlates with the visual layer. Music can, for

example, take on a scene’s tempo and phrasing, thus emphasizing what can be seen

on the screen; that is to say, it can act empathetically (see [Chi94], p. 8). In a

sense, this type of music is tightly attached to the picture, hence perceived rather

unconsciously and interpreted instinctively (see [Sch90], p. 79).

On the other hand, music can also take on a different rhythm and emotional meaning

than the scene it accompanies; in that sense, it acts anempathetically (see [Chi94],

p. 8) and needs more intellectual involvement with what is being heard, in order to

understand the meaning(s) transported by it (see [Sch90], p. 80).

6Diegetic sounds are sounds whose cause belongs to the context of the storyline of the movie,

whereas non-diegetic sounds are those who cannot be explained directly from what is happening

on the screen, but comment on what what is seen or communicate emotions (see [Raf02], p. 262)
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These two forms of usage of media music delineate the general field of music dra-

maturgy in which media composers work. In this section, the general methods of

applying this concept to add value to a media product are investigated.

2.3.1. Unification

Sound in film or television acts unifyingly, as the motion picture is by definition

disrupted by the editing process of putting in cuts and transitions. Especially non-

diegetic music can contribute to the unity of an audio-visual artifact by providing

an over-all, homogeneous motif which enables identification of this particular work

(see [Chi94], p. 47).

This effect directly corresponds with, or is supported by the above mentioned con-

cept of audio streams, representing high-level sonic structures that are perceived as

a continuous flow of auditory information. The human sense of hearing constantly

tries to identify such streams which structure and arrange his auditory surroundings

(see [Raf02], p. 254). Hence, when certain design patterns that are described later

on in this chapter are fulfilled, the process of unification takes place automatically.

2.3.2. Punctuation

Here, the term punctuation is not used in the linguistic sense of the word, but to

express the technique of adding a certain flavor to an audio-visual product, that is,

underscoring or contradicting the visual content of certain scenes. Whether there

is a difference between what is seen on the screen or not determines the amount of

information delivered by the sound track. Hence, punctuative use of music becomes

an important design tool so as to add value to a multimedia product (see [Raf02],

p. 266).

In contemporary literature, several attempts have been made to introduce a tax-

onomy for the classification of punctuative media music (see [Sch97], p. 79). For

this thesis, the following model is regarded as the most relevant one.
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Paraphrase

By far, the practice of directly translating the picture’s content into corresponding

sound or musical expressions, called paraphrasing, is the most prevalent one in con-

temporary film and television productions (see [Raf02], p. 267).

One of the key reasons for this has remained the same since the very beginnings

of sound film: The clarification of the picture’s contents for the audience. When

sound in films first came up, the recipients were unfamiliar with the new medium,

and untrained in interpreting the auditory content. This fact, and the technical

shortcomings of optical sound made it necessary to double-code objects and plots

by paraphrasing them (see [Flü01], p. 136) by means of sound design and film music.

This redundancy of information confirms the recipient’s anticipation (see [Raf02], p.

267 and [Chi94], pp. 55f) and is nowadays often utilized in television series. Because

television has more and more become a secondary medium which is viewed along-

side other everyday activities, such as reading, cooking etc., musical paraphrasing of

visual content has gained importance again. More precisely, the viewer/listener has

to be kept informed about the ongoing storyline even though he or she may not be

paying full attention (see [Sch97], p. 25).

Yet even in feature films, there are occasions when the use of paraphrases is not

only justified, but necessary: When, especially at the climax of a movie, the in-

tention of the story is to spark one strong emotion, and all the other dramaturgic

means (acting, photography, editing etc.) point towards it, musical paraphrasing is

of course useful to support this movement (see [Sch97], p. 25).

Finally, paraphrasing is sometimes used to caricature or satirize certain scenes (see

[Sch97], p. 25). This tradition is well known from cartoon movies, when, for example,

Tom the cat is chasing Jerry the mouse and the background music is mimicking their

running exaggeratedly. This, inter alia, has led to the tradition of mickey mousing

in animated films, where music and movement are welded together by several sync

points (see [Sch97], p. 71) in a way that is typical for animated films, but nowadays

also common in non-animated cinema (see [Chi94], pp. 121f).
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Polarization

Neutral or ambivalent image contents attain higher-order semantic meaning when

they are polarized by the underlying music or sound track (see [Raf02], p. 267).

Thus, even inanimate elements of a setting, such as objects, can gain a certain sig-

nificance: A door can appear to be hopeful, or menacing, depending – among other

things – on the music accompanying the picture (see [Sch97], p. 24). In other words,

if there is a discrepancy between the visual characteristics of an otherwise neutral

object or setting, and the emotional or semantic qualities that are intended to be

conveyed, polarization helps bridging this gap (see [Flü01], p. 144).

Another example are clips from archive videos which normally would only make

sense in their original context. By applying polarization to them, they can be inter-

preted by the audience in a totally different context (see [Raf02], p. 267).

Dissonance / Counterpoint

The concept of audiovisual dissonance or counterpoint dates from a figure of speech

named oxymoron, where a linguistic construct of contradictory meanings creates a

tension that is used to call the reader’s attention (see [Sch97], p. 26) – for example

“deafening silence”. In a similar manner, when the visual and the sound layer of

a multimedia product are incongruous, this is likely to wake the viewer’s/listener’s

curiosity, he or she has to get involved with the situation and draw his or her own

conclusions (see [Raf02], pp. 267f and [Sch97], pp. 25f).

Dissonance can transport additional information by utilizing the difference between

visual and auditory content, which has to be solved by the recipient using his or her

own experiences and fantasy (see [Raf02], pp. 267f). The musical layer then has to

be conciously perceived and interpreted, which is why this audio-visual relation is

often regarded as the most valuable in an artistic sense (see [Sch97], p. 25). Chion

([Chi94], p. 56) concludes that

“it is often more interesting when the expectation is subverted.”

However, there are drawbacks included in this stylistic device which have to be con-

sidered when using it. First of all, the information that is intended to be transported

can only be precisely evaluated in the overall dramaturgic context of the artifact (see

[Sch97], p. 27), otherwise false conclusions are bound to occur. In fact, when the
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contradiction implied by audiovisual dissonance turns out to be too radical, an asso-

ciative connection between the two layers becomes impossible (see [Raf02], p. 268),

and their meanings remain separated.

Another form of criticism deals with the “binary logic” ([Chi94], p. 38) that some

applications of audiovisual counterpoint impose on the recipient, because in order

for it to take effect, the visual and auditory elements involved have to be associ-

ated with certain, often stereotyped significances (see [Chi94], p. 38). Consequently,

when used excessively, the resulting products are likely to focus on some special

target group because of the amount of previous knowledge necessary to decode the

inherent contradictory messages (see [Raf02], p. 268).

As a concluding remark it has to be mentioned that either of these three concepts

alone would be dramaturgically useless (see [Sch90], p. 90). Quite contrary, the

possibilities these different approaches offer are only taken advantage of when they

are combined in a dramaturgically sensible manner.

2.3.3. Aural Perspective

The emotional dramaturgy of a motion picture or video is often determined by the

perspective from which the characters aurally perceive their surroundings. Similar

situations are experienced differently according to the emotional state of the protag-

onist (see [Raf02], p. 261); his or her physical and mental conditions are reflected by

what he or she hears in a specific moment (see [Raf02], p. 262). Such a subjectifying

sound track, for example, would remove most background sound effects and noises

and focus on music (see [Raf02], p. 263). This is because in emotional moments,

the surroundings become less important, and the auditory contact with the environ-

ment disappears more and more (see [Flü01], p. 397). Thereby, relations between

the dramatis personae and the audience are established (see [Raf02], p. 263); espe-

cially the protagonist’s emotional world becomes interesting in this context, because

it can promote the audience’s identification with him or her (see [Sch97], p. 15).

It seems crucial, though, that this subjective, emotional aural perspective be used

only carefully and in turn with a more objective, documentary perspective (see

[Raf02], p. 263), because with its focus on the outward reality, the latter serves as

a vessel for the movie’s authenticity and plausibility, which must not be neglected,
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after all (see [Sch97], p. 17). Again, it is vital to understand the aural perspective

of an audio-visual artifact as a dramaturgic means to underline the characters’ emo-

tions and explain their trains of thought to the audience. It is, however, equally

important to describe a movie’s setting in a more factual, informative manner so as

to clarify that whatever is happening on the screen could have happened in reality

likewise.

2.4. Functions & Impacts of Media Music

Assembling all the major observations from the preceding chapters, they imply that

perceptional principles and intercultural concepts pertaining to music for media ap-

plications lead to certain functions it embodies. While functions of film music are

well documented in literature (see, for example, [Win04], [Sch97], [Sch90]), and some

studies adapt them for game audio (see [Jør06], [ENF06]), the functions of music in

non-linear, interactive media seem to be overlooked.

To structure the existing, exhaustive enumerations of media music functions (see

[Sch97], pp. 67f, [Sch90], pp. 89ff, [Raf02], p. 274), the Swedish film composer and

musicologist Johnny Wingstedt proposed a scheme to organize narrative functions

of film music into classes and categories (see [Win04], pp. 3f). This model is com-

pared to other relevant studies and evaluated as for its appropriateness concerning

non-linear, interactive media.

It seems obvious that regarding novel communication forms such as the Internet

or computer games, music evolves from a special social and cultural context which

is largely influenced by the degree of interactivity and immersion with the medium

(see [Win04], pp. 3f). A clearly defined context for music production and reception

leads to a distinct musical message (see [Win04], p. 4). For example, film is nowa-

days a very common experience, which is why film music is often used to transport

well-defined meanings; the same applies to television and commercials (see [Win04],

p. 4). As for the new media, the sociocultural context isn’t nearly as established,

which is why many musical functions have ambiguous character. This section tries

to identify those functions and propose methods to circumvent their weaknesses.
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Wingstedt ([Win04], pp. 6ff) suggests the following six classes of narrative func-

tions of music.

2.4.1. Emotive Class

As argued in section 2.2.2 (p. 10), music is always perceived and interpreted emo-

tionally, which indicates that emotive functions are inherent in all kinds of music.

Regarding functions in media products, it can be divided into mood induction (the

influence music has on the audience’s emotional experience) and communication of

emotion (where the feelings of a certain movie or game character are expressed) (see

[Win04], p. 6).

In computer game applications, emotive fumctions exhibit even larger significance,

since they can directly influence the player’s behavior, and vice versa (see [Jør06],

p. 50). The same applies to interactive media, even though the importance of emo-

tional immersion of the listeners has to be evaluated from case to case. That is to

say, for example in a multimedia installation for a museum or an exhibition, infor-

mative functions may be considered more essential than emotional ones, while for

interactive product presentations or commercials, it may be the other way round.

2.4.2. Informative Class

Quite contrary to the preceding class, informative functions of music rely on the

recipient to be able to decode and understand the message it is meant to deliver.

Nevertheless, the transmission of information by certain musical structures seems

very common in many media contexts such as film or game audio (see [Win04], p.

6f, [Jør06], p. 50).

Recurrent usages involve the communication of a certain meaning or certain val-

ues, or the establishing of recognition (see [Win04], pp. 6f). For example, music can

be used to evoke a certain time period or cultural setting, even though this function

should be used carefully, as it is prone to result in stereotypical sound tracks (see

[Sch90], p. 97 and 98).
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In game audio, and many other settings involving auditory displays, informative

functions are used in Earcons7 which serve as carriers for notifications (messages

that inform about a status or progress and do not require an immediate reaction

by the recipient) or warnings (messages that indicate danger or other circumstances

requiring an immediate reaction) (see [Jør06], p. 50).

Nowadays, the possibilites of music to transport informations and create recogni-

tion value are well explored, since they contribute largely to the success of television

formats, commercials etc. by audio branding (see, for example, [Bro07]). An often

employed design pattern to achieve such a result is the Leitmotif8 (see [Win04], p. 7).

Although the use of informative functions of music in interactive settings is an

intrinsic part of many applications (e.g. information data terminals or museum

installations), it should be used carefully as it strongly depends on the sociocultural

background of the recipients/users. Since messages may not be immediately decod-

able by individuals not familiar with the environment in question, such functions

have to be introduced slowly until they are commonly accepted.

2.4.3. Descriptive Class

This class is comparable to the informative class, with the difference that here the

physical world is described more actively by the music rather than by passively con-

veying certain informations (see [Win04], p. 7). In movies, it is used to establish

a certain setting (e.g. time of day, season or a certain location) or to accompany a

physical activity, such as movement (see [Win04], p. 7).

Nowadays, the second main category in this class – also known as mickey mous-

ing, as mentioned in section 2.3.2 (p. 14) – is only used in a satirical, paroding

manner, or to link a certain character to a certain music (see [Sch90], p. 93), and is

otherwise frowned upon.

In computer games, there is definitely a necessity to describe areas or locations

by means of music (see [Jør06], p. 50), so as to make them distinguishable from each

other. However, descriptive functions of music are dependent on a visual represen-

7see glossary entry
8see glossary entry
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tation of something to be described, which is why their use may not be appropriate

to every possible application.

2.4.4. Guiding Class

Guiding functions of media music include indicative ones, which direct the recipient’s

attention to a certain object or element (see [Win04], p. 7 and [Sch90], p. 101), and

masking ones, which are used to overlay e.g. bad acting or other conditions that

may be worth concealing, such as weak commercial slogans which can be upvalued

by music (see [Win04], pp. 7f).

As might be expected, indicative functions prove to be very useful in the new media

context, since they offer a great potential to be implemented as auditory navigation

interfaces or user-guidance systems (see [Win04], p. 7).

2.4.5. Temporal Class

Just like emotive functions, temporal functions are an integral part of music, be-

cause it always structures and illustrates time (see [Win04], p. 8). Not surprisingly,

time-related functions of music seem to be widely accepted and studied.

First of all, music provides continuity through the process of unification (see section

2.3.1, p. 13), which is also very important in interactive media, especially computer

games, because otherwise the multimodal perception would become disrupted (see

[Win04], p. 8).

Secondly, music defines structure and form; it has a great potential to influence

the perception of time and speed (see [Win04], p. 8). By using its natural possibili-

ties, it is able to shorten or expand periods of time in the ear of a listener. Music can

even assist in bridging large distances of space or time in the diegesis (see [Sch90],

p. 104 and [Chi94], p. 82).

Because of their non-linearity, interactive media are also affected by, and can profit

from this category (see [Win04], p. 8). Periods of time without any user interaction

could be contracted by music, as well as the interaction itself could be commented

or facilitated.
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2.4.6. Rhetorical Class

Rhetorical functions of media music introduce another layer of the narrative, because

music thereby gets in the position to comment on or make a statement about the

ongoing story (see [Win04], p. 8). Sometimes music is even used to caricature a

specific scene, by exaggerating the visual content (see [Sch90], pp. 99f). It involves

the viewer/listener in such a way that he or she is enforced to engage in the inter-

pretation of this new layer (see [Sch90], p. 100).

In non-linear media the use of such rhetorical functions becomes dangerous, be-

cause a clear narrative concept is needed which can be commented on. However,

an innate quality of interactive media is that the storyline – if there is one, such as

e.g. in role playing games – is not predetermined, the user himself is responsible for

how the plot develops. Other types of applications, for example artistic audio-visual

installations, do not incorporate a narrative function at all, which is why a rhetorical

approach to comment on what is seen must fail.

2.5. Design Principles of Media Music Composition

The following explanations try to shed a light on a few methods and approaches that

are worth considering when creating music for media applications. The enumeration

at hand is by no means intended to display every existing design pattern, but meant

to outline the most important ones from the author’s point of view.

2.5.1. Gestalt Criteria

As indicated in sections 2.2 and 2.3, sonic events are organized into higher-level

structures by the human brain, in musical terms for example melodies, rhythms,

harmonies, motifs and so on (see [Raf02], p. 254). This so-called Gestalt quality

is even preserved when the individual elements are altered; e.g. when a melody is

transposed to a higher or lower pitch, it is nonetheless recognized as the same melody

(see [Raf02], p. 254). The requirements that have to be fulfilled in order for the

formation of higher-level structures to occur are called Gestalt criteria or laws (see

[Raf02], pp. 254f); the most important ones are outlined in this section. Prior to

that, it has to be remarked that in acoustic terms, these criteria not only evolve in

the frequency and space domains, but also in the time domain (see [Raf02], p. 255).
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Proximity

When two sonic events are closely located to each other in the frequency, space

or time domain, they are combined to a higher-level structure (e.g. chords). To

maintain transparency of different streams, proximitiy is often avoided deliberately,

or diminished by re-arranging instrumental timbres or distributing sources in the

stereo or surround panorama (see [Raf02], pp. 255f).

Similarity

Similar elements showing the same proximity form a higher-level structure; for in-

stance, a line of adjacent notes is perceived as a melody, whereas distant notes on

the same instrument could be interpreted as two or more melodies – or none at all.

Notably, timbre also plays an important role here: The same note played on two

different instruments is more unlikely to be perceived as a Gestalt than two adjacent

notes played on the same instrument (see [Raf02], p. 256).

Good Continuation

Consecutive elements are regarded as belonging together when they show a common

development of loudness, pitch or tempo (see [Raf02], p. 256).

Closure

Another important quality of perception of higher-level structures is that parts of

a structure which is known but incomplete can anticipate this structure, and lead

to its completion in the listener’s imagination. Therefore, fragments of rhythms or

melodies can be used instead of the original pattern, allowing the composer to vary

it according to this rule (see [Raf02], p. 257).

Common Fate

An element can only belong to one structure, which is expressed by the law of com-

mon fate. Once a pattern is established, it is preserved until another event alters

the perception or destroys the structure (see [Raf02], p. 257).

Figure 2.1 displays a visualization of four Gestalt laws.
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Figure 2.1.: Visualizations of the Gestalt Laws of Proximity, Similarity, Good con-

tinuation and Closure [Bla01]

2.5.2. Temporal Structures

In sound-related terms, temporal structures can be divided into three time domains,

the microscopic, transient and macroscopic time domain (see [Raf02], p. 41), each

of which involves its own design patterns and will be illustrated here.

Microscopic Time Domain

This domain is situated at the level of time where the actual acoustic oscillations

take place, that is between 0.05 ms (milliseconds) and 50 ms. The processes occuring

here are best described by the spectral characteristics of the signal (see [Raf02], p.

41), which includes the timbre and harmonicity of a sound.

From a technical point of view, timbre corresponds to the signal spectrum of an

audio event (see [Raf02], p. 104). The envelope of a signal’s spectrum also deter-

mines its harmonicity: harmonic sounds feature clear peaks at integer multiples of

a fundamental frequency, whereas noisy or inharmonic sounds possess a continuous

spectrum. Furthermore, timbre is the single sound quality that makes two sounds

of equal loudness and pitch distinguishable (see [Raf02], p. 104). Especially in

music applications, Formants9 are a characteristic attribute of an instrument’s tim-

9see glossary entry

23



2 - Music for Media Applications

bre, since they are completely independent of the sound’s fundamental frequency, or

pitch, and play an important role concerning the recognizability of the instrument

(see [Raf02], pp. 104f).

However, the relevance for audio design as well as music is immense. First of

all, timbre is only rarely designed deliberately at all (see [Raf07], p. 102), even

though it possesses a high content of information on a semantic and emotional level

(see [Raf02], p. 107). Secondly, the perception of timbre mostly takes place uncon-

sciously, and thus triggers emotional reactions (see [Raf07], p. 102). The importance

of a careful design of timbre also becomes evident when regarding that timbral fea-

tures of a certain sound can remain in memory over large stretches of time (see

[Raf07], p. 109).

Nowadays, with the aid of synthesizing and sampling techniques, it isn’t uncom-

mon to employ sounds whose harmonicity is residing somewhere between harmonic

and noisy (see [Sch97], p. 188). However, by using novel technologies like Physical

Modeling or Granular Synthesis10 it is also possible to think of new timbres that are

composed of the timbral features of several different instruments – e.g. half violin,

half piano (see [Raf02], p. 109). Examples of approaches using physical modeling

are Apple’s sculpture instrument11, or the works of Dr Stefan Bilbao12. A nice ex-

ample of granular synthesis in combination with a generative evolutionary approach

is Miranda’s Chaosynth (see [Mir02] for details). Clearly, because of the mostly

unused semantic and emotional potential, and the technical possibilities that have

been coming up over the last years, timbre will gain more and more importance in

media-related contexts.

Transient Time Domain

Amplitudes and frequencies of acoustic signals are seldom static, but underlie certain

fluctuations in the transient time domain, which is located between 50 ms and 150

ms (see [Raf02], p. 41). Sound onset and decay, which are valuable characteristics for

identifying sound sources such as musical instruments, belong to this time domain

(see [Raf02], p. 41). A sound’s envelope is situated between this domain and the

10see glossary entries
11http://www.apple.com/logicstudio/instruments/#sculpture
12http://www.music.ed.ac.uk/staff/academicprofile/StefanBilbaoAcademicProfileSoundfiles1.html
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macroscopic one, which is why the related design patterns are evaluated in the

following section.

Macroscopic Time Domain

Larger temporal structures (>150 ms) are combined in the macroscopic time domain

– in a musical sense this includes structures such as envelope, tempo, meter, rhythm

and melody (see [Raf02], p. 41).

Envelope The temporal composition of most sonic events can be crudely divided

into the attack, decay, sustain and release (ADSR) phases, which of course

represents a simplification of real conditions (see [Raf02], p.41). The attack

phase is influenced by the onset characteristics of an instrument – a wind in-

strument for example has a longer attack time than a stringed instrument (see

[Raf02], pp. 41f and [Sch97], p. 207). In the following decay phase, the natu-

ral resonance frequencies of an instrument die away. Therefore, an instrument

whose vibrations are not permanently excited – like bowed instruments – has

only a two-phased envelope consisting of attack and decay (see [Raf02], p. 42).

The length and level of the third, sustain phase are determined by the kind of

excitation taking place (see [Raf02], p. 42 and [Sch97], p. 207). Lastly, when

the external excitation has ended, the length of the release phase (called release

time) is determined by the attenuation exerted by the instrument (see [Raf02],

p. 42). When dealing with computer-generated, synthetic or sampled sounds,

these are all parameters which can be controlled and taken into compositional

considerations. Additionally, a sound’s envelope can have significant impact

on its perceived timbre (see [Raf02], p. 105). Figure 2.2 illustrates the four

envelope phases.

Tempo Musical tempo is defined as the number of pulses per unit of time (e.g. beats

per minute, bpm), or using qualitative notations (such as allegro, adagio and

so on) (see [Raf02], p. 277 and [Sch97], p. 145). Variations of tempo (e.g.

rubato) are an underestimated and rarely used stylistic means (see [Raf02], p.

277).

A pulse, on the other hand, is regarded as the smallest musically meaning-

ful unit and is determined by the temporal distance between two elements (see
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Figure 2.2.: ADSR envelope [Bea96]

[Raf02], p. 276). It is a useful term for the definition of larger structures, such

as the following ones.

Meter A musical meter is constructed when musical pulse is split up into groups

(bars), along with the formation of accented and unaccented pulses according

to the amount of pulses in a bar (see [Raf02], p. 277 and [Sch97], p. 143). The

most common meter in Western music is 4/4, but other, asymmetric meters

such as 3/4, 5/4, or 7/4 are also known and used (see [Raf02], pp. 277f.)

The superposition of several meters is called polymeter, which can lead to more

complex, repeating temporal structures. For instance, a 3/4 meter interfering

with a 4/4 meter leads to a repeating pattern of 12 pulses (see [Raf02], p. 278).

Other, more complex polymetrics can even result in rationally unintellegible

structures (see [Sch97], pp. 143f).

Rhythm A musical rhythm is a macroscopic temporal structure with reiterating

nature, whose anatomy can range from simple to complex (see [Sch97], pp.

142f). Its pattern is mostly composed of accented and unaccented beats of

different duration (see [Raf02], p. 278). Once established, it can easily be

recognized by the listener and can thus be utilized to orginate other, larger

structures (see [Raf02], p. 278). It is important to regard a rhythmic structure

in the context of the underlying meter, since the position within a bar or

between several bars can directly influence its impact (see [Raf02], p. 278).

Melody A melody is composed of a progression of notes that differ in duration

and/or pitch, and form a high-level structure according to the above men-
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tioned Gestalt criteria (see [Raf02], p. 279). Melodies allow for a temporal

organization of music, by incorporating a self-similar, characteristic structure

based on symmetry, rhythm and integrity (see [Raf02], p. 280 and [Sch97], p.

163).

In the tradition of Western music, melodies are often shaped by symmetri-

cal, arc-like structures (typically 8 or 12 bars) that anticipate a certain point

in time where the structure concludes (see [Raf02], p. 280 and [Sch97], p. 164).

Thus, melodies can unconsciously influence the listener’s perception of time,

e.g. if this anticipation remains unfulfilled for a longer period of time, because

the melodic arc isn’t finished, a feeling of timelessness can be established (see

[Raf02], p. 280).

Similar to that, minimal music tries to avoid a large-scale temporal structur-

ing of music by the repetition of small-scaled patterns which are continuously,

but slowly altered (see [Raf02], p. 280), which can also have an impact on the

listener’s perception of time.

2.5.3. Arrangement / Instrumentation

In classical composition theory, arrangement represents the organization of instru-

ments or timbres (see [Sch97], p. 192). However, unlike in the baroque or classicist

musical eras, nowadays formal structures of ensembles have almost dissappeared.

Moreover, the media composer has to get involved with the growing mass of elec-

tronic timbres coming up (see [Sch97], p. 193). It is crucial for him or her to know

what instrument to employ to achieve a certain timbre or pitch range, or which

combination of instruments will have a desired emotional or semantic impact (see

[Sch97], pp. 193f).

Until the era of the First Viennese School, the instrumentation of orchestral en-

sembles had been rather static – harmonization was regarded as the primary compo-

sitional discipline, and it was considered unimaginable to alter a piece’s instrumen-

tation until its ending (see [Sch97], p. 194). In the early years of the 19th century,

these static structures were broken up, and the instrumental combinations of orches-

tras were gradually expanded – in pitch range as well as in size (see [Sch97], pp. 197f).

27



2 - Music for Media Applications

In the 20th century, timbre was finally regarded as one of the key aspects of composi-

tion (see e.g. works of György Ligeti). With the development of sound synthesizers

and samplers, an inexhaustible pool of timbres has become available, allowing for

unheard complex progressions of timbre (see [Sch97], p. 207). The impacts of instru-

mentation – and those of design of timbres respectively – on mood representation

will be discussed in chapter 3.

2.6. Taxonomy

Almost every existing music taxonomy relies on the classification of music into genres

(see e.g. [PC00]). However, in a media context, music is mostly either custom

composed for the application in question, or it is selected in such a way as to express

a certain meaning or mood. Therefore, a genre-based categorization of media music

appears to be a futile undertaking. Instead, a possible approach could use existing

media taxonomies and try to analyze what types of music are used for each medium

– if any. Moreover, media producers have developed a special categorization scheme

of music according to its possible field of application, or to the meaning that is to

be conveyed. Both possibilities will be investigated in this section, and enhanced by

comments on their applicability regarding the objectives of this thesis.

2.6.1. Media Taxonomies

A frequent observation found in theoretical studies towards taxonomizing media is

the notion of all media representing possible containers for other media (see [Bei04]

and [Whi04]). Another reccuring approach concerning the categorization of media

is their assignment to human senses – primarily to the visual, aural and tactile

domains, and, of course, their intersections (see [Hou04]). While music is clearly

located in the aural domain, it might on the other hand surprise that it is regarded

as a medium of its own by most authors (see [Bei04], [Hou04] and [Mar04], [Whi04]).

Evidently, following the argumentation that music is in fact its own medium, it is

though a very common example of a medium contained within a different medium.

Beitler [Bei04] remarks that music is often part of mass media such as film, televi-

sion, or radio. It can, however, also be assigned to the internet (see [Whi04]) or,

more recently, telephone. Whitehead [Whi04] points out that this nestedness of me-
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dia also contributes to the public perception of media, but in many cases the nested

media do not require each other. He brings the example of radio and music: If music

didn’t exist, the public notion of radio would alter, but it would not cease to exist

(see [Whi04]).

Regarding the perceptional spheres used for the categorization of media might also

contribute to the objective of retrieving possible fields of application for media mu-

sic. Houlihan [Hou04] uses three circles in her graphical representation of a media

taxonomy, referring to the three senses of sight, hearing and touch. It might be

obvious that media relying solely on the human sense of sight and/or touch will not

be a valuable basis for the application of music. Although music can be described

or otherwise represented by media such as writing, painting, photography or braille,

it cannot unfurl its functions as described in this chapter. Media depending en-

tirely or partially on the sense of hearing on the other hand are often influenced by

music, and are able to profit from musical additions. While it seems obvious that

radio or speech are closely related to and influenced by music, the intersection with

visual media also has a long tradition: Music theater (e.g. opera, musical etc.),

television and cinema have been benefitting from their musical ingredients, partly

for centuries. However, especially the intersection of all three senses, visual, oral

and tactile ones, offers a lot of novel applications for music, some of which are al-

ready widely accepted and exploited by the industry. These applications include cell

phone ringtones, music for videogames, web sound tracks as well as music for adver-

tisement (for a detailed explanation of the underlying media taxonomy, see [Hou04]).

Concludingly, a possible way of constructing a taxonomy of media music could start

by dividing the potential applications into sensory groups:

• music for audio-only media (radio, speech)

• music for audio-visual media (theater, cinema, television, video art)

• music for audio-tactile media (e.g. telephone)

• music for audio-visual-tactile media (cellular phones, video games, the internet,

advertisement, infotainment, edutainment etc.)
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2.6.2. Common Media Music Categorization Scheme

As outlined above, several terms for different use cases of media music have emerged

in the industry, some of which are shortly described here (see [Sch97], pp. 70ff for a

detailed explanation). Mostly these terms refer to intended meanings or functions, or

to positions within a composite media product. Certainly, this list can be extended

further by adding other target media or groups.

Jingle A short music clip signifying the start (or end) of a certain program or block

(e.g. commercial break, station ID, news headlines etc.).

Music Bed Mostly ambient music with considerable rhythmic components, which

are used to underlay visual (in case of television) or oral (in case of radio or

television) content that does not necessitate direct connection with the music

track. Here mostly loops are utilized, which presents a main starting point for

revision and refinement, where generative approaches could also contribute to

the originality and diversity of such musics.

Signation Usually a short musical sequence of high recognition value, used to an-

nounce the beginning of a television magazine, for example.

Theme Music A recurring piece of music of medium length, signifying the start of

a television series (sometimes the term is also associated with feature films).

Illustration Music This term refers to film music that is used to accompany the

narrative of a movie, although it is also used in many television formats.

Bridge Short sequences that are used to connect a certain scene to a following one

(often used in television contexts).
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3. Musical Representation of Emotions

and Moods

The research conducted in the preceding chapter has identified several functions

which media music incorporates, the most popular one probably being the function

of delivering or depicting emotional content. That is to say, interrelations between

emotions or moods and their musical representations have been subject to many

extensive studies since psychology became an accepted discipline in the early 20th

century (see e.g. [BW05], [BW06], [Mey56], [Sch06]). However, as argued in section

2.1 (p. 5), many interactive non-linear media applications still lack an integrated

emotional musical design, which could help improve the user experience of the prod-

uct (see [MK06], p. 37). Therefore, this chapter focuses on the underlying principles

concerning how emotional content is expressed by musical structures.

The first question arising here is, whether music indeed contains the potential to

evoke emotional reactions, or to represent affective states. While this has been the

accepted conviction of many musicians, composers and listeners for centuries (see

[Mey56], p. 7), there is also evidence for physiological reactions to musical stimuli,

which are caused by emotions (see e.g. [Mey56], pp. 10f, [MK06], [Sch06], p. 14).

The representation of moods and emotions by music gestures, on the other hand,

can be explained by their similarity to behavioral gestures: both are characterized

by energy, tension, direction and continuity (see [Mey56], p. 268).

Even though these two phenomena may accompany each other, it is equally pos-

sible that the emotional content illustrated by a music gesture is understood, but

does not trigger any affective reaction at all (see [Mey56], p. 268 and [Sch06], p.

26). The focus of this thesis in terms of emotional design of music is laid on the rep-

resentation of feelings, for use as ambient, illustrative music. Hence, the evocation

of emotions is not discussed in this chapter.
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Several emotion theories also differentiate between emotions (which are considered

temporary occurences which follow a certain intensity gradient) and moods (more

permanent and constant states of affect) (see [Mey56], p. 7 and [Sch90], p. 81).

Schneider ([Sch97], p. 32) also mentions the musical representations of these two

different concepts: timbre and melody for emotions; accompaniment, rhythmic and

harmonic structures for moods. For the purpose of this thesis, it is considered suf-

ficient to emphasize on the mood characteristics of music, as such long-term, slowly

evolving affective states are more apt for the expression by a generative algorithm.

In the following, this chapter gives an overview over the existing taxonomies for

mood classification of music, and investigates Russell’s circumplex model of affects,

which is widely accepted and used by many computer musicians (see section 3.1.2,

p. 35). Afterwards, the modeling of mood music is examined by assembling and

evaluating relevant literature on this topic. Thereafter, the musical parameters de-

rived from this study are mapped onto the above mentioned circumplex model, for

the purpose of developing a simplified two-dimensional user interface. Finally, the

prototype’s prerequisites concerning the graphical user interface, and what musical

parameters the application has to be able to process, are specified.

3.1. Mood Classification

The classification of moods that are expressible by music is a central aspect regard-

ing the development of a music-generating application. Especially concerning the

emphasis on a simplified user interface for the manipulation of emotional content,

it seems vital that the terms and tags used are all understood and accepted by the

target group, in this case media producers. It seems obvious that the musical ex-

pression of mood and emotions can be broken down into categories, which on the

other hand have no clear boundaries and tend to intermingle (see [Bru07], p. 26).

The following two sections will give a condensed overview of useful techniques for

the categorization of mood music.
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3.1.1. Taxonomies

Several attempts have been made to develop a categorization scheme for the mood

qualities of music. One rather simple approach – used for the adaptive production

of music for game characters – divides the conveyable affects into positive, neutral

and negative as follows ([ENF06], p. 4).

Positive affects

• Amusement

• Interest / Excitement

• Enjoyment / Joy

• Relief

• Satisfaction

Neutral affects

• Confusion

• Surprise / Startle

Negative affects

• Distress / Anguish

• Fear / Terror

• Anger / Rage

• Shame / Humiliation

• Sadness

• Guilt

Even though this scheme may have the advantage of being simplistic and easy to use

in a gaming environment, it is strictly one-dimensional and discrete. Thus, it lacks

the ability to define hybrid states consisting of two or more adjacent categories, or

to continuously adjust the emotional parameters e.g. of a scene.
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Another approach originating from the discipline of Music Information Retrieval

(MIR) deals with automatic music mood estimation for the emotional categorization

of a music library [SMvdP07]. For that purpose, a reduced term set was developed by

user surveys, emphasizing on easiness of use and importance of the used expressions

(see [SMvdP07], p. 345). The resulting 12 categories are

• arousing-awakening

• angry-furious-aggressive

• calming-soothing

• carefree-lighthearted-light-playful

• cheerful-festive

• emotional-passionate-touching-moving

• sad

• loving-romantic

• powerful-strong

• restless-jittery-nervous

• peaceful

• tender-soft

This term set, although also one-dimensional, tackles the problem of the high amount

of subjectivity connected with mood categorization by involving results from listener

surveys. To achieve this, the classes that most subjects seem to agree upon concern-

ing their meaning and importance were identified (see [SMvdP07], p. 345). A similar

approach is taken by Hu et al. ([HBD07]): By retrieving the top rated mood tags

attached to a standardized set of musical pieces from music information services

such as last.fm1, a simplified but practicable term set is constructed (see [HBD07],

p. 309). So, those mood descriptions achieve justification by being derived from the

pragmatic context of social music networks. The top 19 mood tags were taken and

clustered thereafter by comparing the tag occurences in the dataset (see [HBD07],

p. 310). This analysis yielded 3 clusters with the top tags
1http://www.last.fm/

34



3 - Musical Representation of Emotions and Moods

• aggressive, angry

• mellow, calm

• upbeat, happy

The remaining 13 top-rated tags (sad, relaxing, sexy, romantic, dark, cool, melan-

choly, funny, powerful, emotional, soft, energetic, depressing) were situated some-

where between those three clusters (see [HBD07], p. 310). This interesting piece

of research shows that even though emotional music categories display a tendency

to agglomerate themselves with other categories to higher-level classes, their bound-

aries become blurred when investigating them in more detail. Here, the categories

are also aligned in a two-dimensional space after clustering, allowing for a better

visualization of how they interrelate with each other. Hu et al. argue that this set is

probably over-simplified, but since it is grounded in a real-world context, it may be

sufficient for retrieval and consumer purposes (see [HBD07], pp. 309f). For produc-

tion purposes, though, it still lacks clear structure to be useful for the construction

of an optimized user interface.

3.1.2. Circumplex Model of Affects

The so-called Circumplex Model of Affects was proposed by James A. Russell in

1980 [Rus80]. The central concept behind this model is that every affective state

is composed of the interconnection of two separate neurophysiological systems: one

connected to valence (pleasure/displeasure), and the other to arousal or activation

(see [RPP05], p. 716). Each emotion or mood is thus representable as a linear

combination of these two axes (see [RPP05], p. 716). This fact is illustrated by

figure 3.1: For example, a sad emotion consists of a medium degree of activation

combined with a low degree of valence/pleasure. A feeling of tension, on the other

hand, includes a higher level of activation and medium valence. Interestingly, Russell

et al. ([RPP05], p. 719) also remark that

“[...] the 2-D structure is found consistently across a large number of

studies.”

The other implication that this model brings about, which also coincides with the

observations from the preceding section, is that emotions do not possess discrete

boundaries that would separate affective states from one another (see [RPP05], p.

719). This is underlined by the fact that subjects seldom report the feeling of a
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Figure 3.1.: Circumplex Model of Affects ([RPP05], p. 716)

particular positive emotion without also experiencing other emotions of high valence

(see [RPP05], p. 719). Moreover, this fact is also consistent with the findings of

Hu et al. (see section 3.1.1, p. 34) – there, many songs frequently tagged with one

specific emotion were often tagged with another specific emotion as well.

In computer science, the circumplex model has also acquired broad acceptance,

since the inherent two dimensions are easily managable in terms of computations

(see [KCBM08], p. 583). For instance, Wingstedt et al. use the circumplex model

for their studies concerning the correlations of emotions and musical parameters (see

[BW05], p. 2); Knox et al. [KCBM08] use it as the basis of a music emotion classi-

fication system.

For the purpose of this thesis, the circumplex model seems ideal out of three reasons:

• As indicated above, the boundaries between affective states appear to be

blurred. Therefore, to provide seamless musical transitions between two or

more moods, an underlying model supporting this prerequisite is needed. The

circumplex model directly implements this postulation by providing the two

independent dimensions of valence and arousal.
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• Furthermore, the immanent two axes allow for a specific mapping of musical

parameters onto them. For example, if tempo should prove to be a relevant

factor contributing to the representation of activation, the straightforward con-

clusion would be to map it onto the arousal axis, and define suitable border

values for it.

• A central part of the prototype to be designed consists of the construction of

an optimized user interface. Since the circumplex model is often illustrated as

a circle with some exemplary emotions aligned around it (see figure 3.1), this

representation also seems apt for the conceptual design of an interface.

3.2. Modeling of Mood Music

The first step towards a functional prototype which implements a musical representa-

tion of moods includes identifying musical parameters which are generally ascribed to

certain emotions. Thereafter, those parameters have to be evaluated regarding their

aptness to be mapped onto the circumplex model of affects. Finally, the prerequ-

isites (in terms of implemented musical parameters) for the algorithms used within

the prototype have to be determined.

Certainly, prior to that some constraints which are connected to the task have to be

examined. One problem that has to be addressed are the cultural and social interre-

lations and dependencies that come along with musical representations of moods and

emotions. There seems to be some consensus that concerning the classification of

moods, cultural differences do not play a decisive role (see [KCBM08], p. 582). How-

ever, regarding the perception and interpretation of musically represented moods, it

has been noted that different cultures use different conventionalized musical figures

to express certain emotions (see [Mey56], pp. 266f). For reasons of simplicity, in the

context of this thesis the assumption is made that the target listeners either belong

to the Western culture area, or have been trained by Western media to become ac-

customed to their standardized musical expressions.

Another issue is related to large-scale temporal structures which cannot be modeled

using simple musical parameters, such as tempo, rhythm or harmony. In other words,

musical dramaturgic progressions, such as the expected conclusion of a melody or

the resolution of dissonances (which certainly would contribute to the overall emo-
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tional impact of the music, see [Mey56], pp. 25ff) etc., cannot be predetermined by

a basic set of musical variables.

3.2.1. Musical Parameters

Leaving cultural and social aspects aside, there seems to be a certain extent of agree-

ment among Western musicologists concerning the relationships between certain mu-

sical parameters and the emotional experience connected to them (see [BW06], p.

66). It also appears to be accepted that several musical parameters together form

the representation of a specific mood or emotion (see [Bru07], p. 22 and [ENF06],

p. 5). At any rate, the variation of those parameters is believed to cause the alter-

ation of the perceived mood (see [BW06], pp. 65f). In this section, eleven musical

parameters are investigated concerning their ability to transport emotional values.

Mode

Probably one of the most popular stereotypes related to musical mood representation

are the common interpretations of the major and minor modes. Even though their

connotations appear to be quite straightforward - the major mode being associated

with joy, and the minor mode with sadness, their use is not always that unam-

biguous. Moreover, other modes, for example church modes, pentatonic, whole tone

or chromatic scales are often totally neglected regarding their emotional significance.

Apart from happiness, the major mode also appears in the context of serenity or

solemnity (see [BW06], p. 66). The minor mode, because of its division in natural,

harmonic and melodic scales2, needs a more sophisticated analysis. Because of their

potentially chromatic nature, e.g. composed of a melodic ascending and a natural

descending, the minor modes also spread a sense of mystery (see [Mey56], p. 222

and pp. 224f). In some contexts, minor modes are used to create a feeling of tension,

dreaminess, disgust and anger (see [BW06], p. 66), but also neutrality and harmony

(see [ENF06], p. 5).

Whole tone or chromatic scales are sometimes used to display a gloomy or depressed

mood (see [ENF06], p. 5). Church modes, e.g. the Lydian mode, are occasionally

employed to convey a feeling of unfamiliarity (see [Sch97], p. 134).

2see Minor Modes glossary entry
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Instrumentation / Timbre

As outlined in section 2.5.2 (p. 23), timbre is a key sound characteristic regarding

its emotional implications, and carries a large potential for a better representation

of moods. Beginning in the 19th century, timbre and instrumentation respectively

have reached a higher level of acceptance concerning their impact on the affective

perception of music (see section 2.5.3, p. 27). For example, mixed timbres of various

different instruments can convey a feeling of mystery, as they cannot be dissected

anymore (see [Sch97], p. 200). Furthermore, synthetical sounds often express surre-

alism or time dilatation, and are therefore used in science fiction or horror contexts

(see [Sch97], p. 207)

Regarding the spectral envelope, a bright timbre (consisting of a fundamental fre-

quency with a rich overtone spectrum) might indicate a feeling of potency, disgust,

anger, terror, activity or astonishment (see [BW06], pp. 66f). On the other hand, a

rather dull sound leads to associations with pleasentness, joy, affection, unhappiness

or boredom (see [BW06], pp. 66f).

Tempo

Tempo is regarded as a major parameter concerning mood representation (see [BW06],

p. 67 and [Bru07], p. 22). Tempo fluctuations are considered a powerful means to

express the mood swings of a certain character (see [Sch97], p. 145).

A fast musical tempo leads to the impression of joy, excitement, astonishment, anger

or terror (see [BW06], p. 67). Slow tempo is connected to sadness, calmness, solem-

nity, affection, boredom and disgust (see [BW06], p. 67).

Meter

The most frequently used time signature being 4/4 (see p. 26), it transports sym-

metry and stability (see [Raf02], pp. 277f and [Sch97], p.143). Other meters, such

as 3/4, 5/4, 6/8, 7/4 are used to convey a feeling of activity and liveliness (see

[Raf02], p. 278). A special role is attributed to polymeters: because of the super-

position of more than one metric framework, there is no fixed first beat anymore,

which can lead to a sensation of ecstasy and transpersonality (see [Sch97], pp. 143f).
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Eladhari et al. have used different time signatures to represent angry (5/4), an-

noyed (7/8), neutral (4/4), cheerful (6/8) and exultant (3/4) affective states (see

[ENF06], p. 6).

Rhythm

Rhythmic structures are often regarded as a representtaion of energy and arousal

(see [ENF06], p. 3). Rhythms can be very simple, or can achieve a high degree of

complexity either by the omission of pulses, or by dividing pulses into smaller parts

and combining them to a higher-level structure (see [Bir03], p. 102).

Simple rhythms are used in joyful as well as solemn contexts (see [BW05], p. 165,

[Bru07], p. 22 and [Sch06], p. 23). Complex rhythmic structures, on the other hand

convey e.g. sadness (see [BW05], p. 166 and [Bru07], p. 22).

Accentuation

Accentuation, or accent evenness expresses the loudness variations of a sequence of

musical notes (see [BW06], p. 67). Putting an emphasis on the musical pulse can e.g.

enhance an expression of hecticness, stress, amusement or fear, whereas a constant

accentuation can convey sadness, calmness, or seriousness (see [Raf02], p. 276 and

[BW06], p. 67).

Articulation

Musical articulation is characterized by the ratio between the actual duration of a

note and the length of a musical pulse. In other words, legato articulation means

that every note’s actual duration is equal to the length of a pulse, thus connecting

the notes without temporal gaps between them. This form of articulation is used to

communicate a feeling of sadness, affection or solemnity (see [BW06], p. 67).

Staccato, on the other hand means that every note is only played out for a certain

percentage of the duration it should possess, according to the pulse. This can result

in a representation of high energy, delight, arousal, terror or anger (see [BW06], p.

67).
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Volume

By volume, the overall sound level of a piece is expressed (see [BW06], p. 67). Of

course, a piece’s volume is determined by the individual volumes of the participating

instruments. Crescendo (increasing volume) and decrescendo (decreasing volume)

have been discovered as a stylistic device for emotional expression in the early 19th

century (see [Sch97], p. 195).

A high overall sound level leads to the impression of joy, intensity, power, tension

and anger (see [BW06], p. 67). A low volume conveys a feeling of sadness, affection,

solemnity or fear (see [BW06], p. 67).

Register

A note’s register, or pitch level also seems to have an immense impact on the rep-

resentation of affective states (see [BW06], p. 67 and [Sch06], p. 23). A high pitch

denotes the expression of joy, grace, dreaminess, activity, astonishment, terror or

anger, whereas a low pitch often carries the meaning of sadness, solemnity, boredom

or pleasantness (see [BW06], p. 67).

Melodic Range / Ambitus

The melodic range or ambitus of a piece of music is defined by the lowest and

highest occuring notes respectively. A wide melodic range is often associated with

happiness/joy (see [BW05], p. 165 and [Bru07], p. 22), whereas a narrow ambitus is

mostly connected to sadness or depression (see [BW05], p. 166 and [Bru07], p. 22).

Harmony

Harmonic features of a piece of music are mostly expressed by the polarity between

consonance and dissonance. Meyer ([Mey56], p. 230) states that

“[...] consonance and dissonance are not primarily acoustical phenom-

ena, rather they are human mental phenomena and as such they depend

for their definition upon the psychological laws governing human per-

ception, upon the context in which the perception arises, and upon the

learned response patterns which are part of this context.”
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One constant of human perception, he argues, is the inclination of the human mind

to organize the stimuli it receives in the simplest way (see [Mey56], p. 231). In other

words, taking the Gestalt laws into account, consonance presents a stable total entity,

whereas dissonance is a less stable Gestalt (see [Mey56], p. 231). Dissonances are

regarded as tendencies which exert their affective potential by delaying the approach

of a stable entity, the consonance (see [Mey56], p. 232). Moreover, the perception of

harmony (or its absence) is largely influenced by cultural and social contexts: While

a medieval definition of consonant intervals would only have included octaves, fifths

and fourths, it was later expanded by the major and minor thirds and sixths (see

[Raf02], p. 99).

Many studies have been conducted regarding the psychoacoustic conditions that

lead to a perception of dissonance or consonance (see [Raf02], pp. 99ff). For reasons

of simplicity, in this thesis the above-mentioned intervals (octave, fifth, fourth, major

and minor thirds and sixths) are regarded as consonant, all the others as dissonant

(see also [Sch97], pp. 120ff).

Consonant harmonies are often experienced as happiness, solemnity, or softness (see

[Sch06], p. 23, [Bru07], p. 24 and [BW05], p. 165), whereas dissonances are mostly

interpreted as sadness or excitement (see [Sch06], p. 23 and [BW05], p. 166).

3.2.2. Parameter Mapping

In order to be apt for the construction of a user interface implementing the circum-

plex model of affects, the musical parameters investigated above have to be suitable

for the mapping onto the valence and arousal axes. This leads to the hypothesis that

each linear combination of valence and arousal that can be found in the circumplex

model of affect, has a unique set of musical parameters attached to it expressing

the mood in question. For the purpose of retrieving the relevant musical parameters

for the two dimensions, exemplarily the diametrically opposed moods of sadness/joy

(low and high valence) and tension/calmness (low and high arousal, see figure 3.1)

are analysed concerning the combination of musical characteristics that lead to their

representation.
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Sadness / Joy

Undoubtedly, this pair of affects has been the most widely studied in musicologic

literature (see e.g. [BW05], pp. 165f, [Bru07], p. 22 and [Sch06], p. 23). Here, the 11

musical parameters evaluated in section 3.2.1 (p. 38ff) are listed, and aligned with

proposed values (see table 3.1). For the suggested tempo and articulation values see

[BW05], p. 167, even though they were adapted here.

Sadness Joy

Mode minor major

Timbre dark dark/medium

Tempo
(rather) slow (rather) fast

(approx. 60-100 bpm) (approx. 80-120 bpm)

Meter 4/4 6/8 or 3/4

Rhythm complex simple

Accentuation constant slightly accented

Articulation
(rather) legato (rather) staccato

(80-90% of pulse length) (60-70% of pulse length)

Volume soft loud

Register low high

Melodic Range narrow wide

Harmony dissonant consonant

Table 3.1.: Parameter Mapping Example 1 – Sadness/Joy

Tension / Calmness

The affective pair of tension and calmness has been less studied in literature. There-

fore, the suggestions in table 3.2 are derived mainly from the parameter evaluation

in section 3.2.1.

Application of the Valence and Arousal Dimensions

From the exemplary analysis above, some correlations between musical parameters

and the valence and arousal axes become apparent:

43



3 - Musical Representation of Emotions and Moods

Tension Calmness

Mode minor major/minor

Timbre bright dark

Tempo fast (>120 bpm) slow (<70 bpm)

Meter 5/4 or 7/8 4/4

Rhythm medium complexity medium complexity

Accentuation accented constant

Articulation
staccato legato

(50-60% of pulse length) (90-100% of pulse length)

Volume loud soft

Register high low

Melodic Range medium medium

Harmony dissonant consonant

Table 3.2.: Parameter Mapping Example 2 – Tension / Calmness

1. Valence

The most prominent correlation is again the mode, which appears to be strongly

connected to valence. Also rhythmic complexity, melodic range and harmony

show a connection with the valence axis. Figure 3.3 displays the interrelations

and proposed limiting values.

Low Valence High Valence

Mode minor / whole tone / chromatic major / minor

Rhythm complex simple

Melodic Range narrow (1 octave) wide (2-3 octaves)

Harmony dissonant consonant

Table 3.3.: Mapping of Musical Parameters on the Valence Axis

2. Arousal

One of the most obvious interrelations between the arousal axis and a musi-

cal parameters is related to tempo: slow tempo seems to indicate low arousal

whereas high tempo denotes high arousal.
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Other correlations can be assumed concerning articulation, timbre and volume.

A slight relation can also be suspected between arousal and accentuation. The

respective correlations and proposed limiting values are described in table 3.4.

Low Arousal High Arousal

Tempo slow (50 bpm) fast (150 bpm)

Articulation
legato staccato

(90-100% of pulse length) (50-60% of pulse length)

Timbre dark bright

Volume soft (-24...-6 dB) loud (-18...0 dB)

Accentuation constant accented

Table 3.4.: Mapping of Musical Parameters on the Arousal Axis

3. Cross-Correlations

Concerning register and meter, the correlation cannot be determined com-

pletely, a cross correlation between the valence and arousal axes seems to be

the case. Low register is simultaneously associated with low arousal and low

valence, and the opposite seems to be true for high register.

As for meter, it appears that a 4/4 time signature is preferred to express

low arousal (e.g. calmness), whereas higher levels of activation are represented

by other meters. Obviously there is a cross-correlation with valence concerning

the time signature: positive affects are expressed by a 3/4 or 6/8 meter (e.g.

joy), as opposed to negative affects (e.g. tension), where a more uneven meter

such as 5/4 or 7/8 is preferred. As a simplification, table 3.5 shows the valence

and arousal quadrants connected with the respective register and meter values.

Low Valence High Valence

High Arousal
high register

5/4 or 7/8 time signature 3/4 or 6/8 time signature

Low Arousal
low register

4/4 time signature 4/4 time signature

Table 3.5.: Cross Correlations between Valence and Arousal axes
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3.2.3. Prototype Prerequisites

Implementable Musical Parameters

In order to outline the prerequisites for the algorithms used for automated com-

position, it is crucial to evaluate the evaluated musical parameters regarding their

scalability and implementability.

Some characteristics have to be considered as global parameters, affecting the perfor-

mance of the whole application. For instance, for reasons of intelligibility, it appears

plausible to define tempo and meter, as well as volume as global parameters, appli-

cable for all instruments that are included. This limitation leads to the omitting of

polymeters and other phenomena, but the benefit for the overall clarity of the output

seems to justify this restriction. Concerning their implementability, an algorithm for

these three parameters should be straightforward to develop.

Another global parameter is given by the key of the piece. It should be noted

that to obtain the key, the mode parameter has to be extended by the definition of a

key tone. Modulation (i.e. switching between different keys) should only be possible

by user interaction, i.e. the user is entitled to alter the key note by a user interface

component.

All the other parameters (rhythm, accentuation, articulation, melodic range, har-

mony, register) can be regarded as local parameters, which can be varied for each

individual instrument connected to the application. It also seems feasible to group

the rhythm, accentuation and articulation parameters into one module, as they all

depend on meter and tempo. Similarly, melodic range, harmony and register – all

the parameters depending on the key of the piece – should be merged into a module.

In chapter 4, several algorithms’ possibilities concerning the implementation of these

musical parameters will be evaluated. However, a problem arises concerning the tim-

bre parameter: Since timbral features are not part of the Musical Instrument Digital

Interface (MIDI) protocol, which is going to be used for the communication between

the generative composition algorithms and the instruments addressed by them, it has

to be omitted here. It should be remarked, though, that for future research on this

topic, the timbre parameter seems to be a pivotal one concerning the representation
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of affective states.

User Interface

As the underlying affective model is a two-dimensional one, it seems legitimate to

build a user interface that directly implements these valence and arousal axes. The

first device that can be thought of could be a joystick, a trackball or something

similar. As a screen-based representation, it seems sufficient to integrate a two-

dimensional slider, where the two axes can be affected simultaneously and indepen-

dently.
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4. Algorithmic Composition

4.1. Introduction to Algorithmic Composition and

Generative Music

4.1.1. Definitions

Delineating the borders of algorithmic versus traditional composition appears to be

an unrewarding task. Any compositional technique following a specific ruleset, e. g.

contrapuntal, or according to some blues or jazz scheme could be considered algo-

rithmic. In the modern sense of the word, however, algorithmic compositions mostly

involve a computer which is generating music according to a specified algorithm.

Together with a random element, this approach usually leads to a pre-determined,

but nonetheless unpredictable aesthetic outcome (see e.g. [Mir01] or [Asc08]).

Generative music, on the other hand, is a more universal term. In theory, every

structure-generating process (e.g. natural phenomenons and their impacts) can be

utilized to spawn aesthetically fascinating musical gestures (see [BW07], p. 1). The

interconnection to algorithmic composition is made up by the uniqueness of the ar-

tifact being produced. Brian Eno, a pioneer in generative ambient music, concludes

([Eno96]):

“Generative music is unpredictable, classical music is predicted. Gen-

erative unrepeatable, classical repeatable.”

What else unifies the two paradigms is the postulation of an unfinished, open piece

of art which embraces the listener’s participation and encourages him to transform

his role from a totally passive to a more active one, contributing to the process of

creating music by influencing the generative process behind it (see [Ess91]).

48



4 - Algorithmic Composition

4.1.2. Historical Context

Apart from early algorithmic applications, such as Mozart’s musical dice game (see

[Mir01], p. 41), such methods have gained a high level of significance and interest in

the 20th century, especially within the movements of serialism and aleatoric music.

These developments were mainly inspired by the post-war necessity to create a new

musical syntax and dispose of old-fashioned compositional traditions (see [Ess96], p.

11).

Serialism

Emerging from dodecaphonic principles of the Second Viennese School (whose most

renowned members were Arnold Schönberg, Alban Berg and Anton Webern), seri-

alism required the composer to submit to a strict ruleset for the creation of music.

The basic law postulated by Schönberg instructs the composer to construct a series

of 12 tones, of distinct ordering. This ordering has to be kept throughout a piece,

and the repetition of a note before all the other notes of the series have been em-

ployed is forbidden (see [Mir01], p. 53). To overcome the drawback of replaying

the same sequence of notes again and again, some transformations of the series are

allowed (transpose, retrograde, invert, and retrograde inversion, see [Mir01], pp. 53f).

Later this approach was extended, e. g. by Pierre Boulez, so as to organize other

musical parameters (such as pitch, duration, dynamics or timbre) by making use of

the root series (see [Mir01], pp. 54f and [Ess96], pp. 13f). The most prominent

example of serial music is probably Boulez’ Structures, a piece for two pianos (see

[Asc08], p. 9 and [Mir01], p. 55). The legacy of serialism as regards algorithmic

composition clearly lies in the application of formalized and explicit rules for the

composition of music (see [Mir01], p. 55).

Aleatoric Music

This countermovement to serialism (alea is the Latin word for dice), whose most

prominent member was John Cage, deliberately abandoned the deterministic serial

approach and included elements of chance for compositional purposes (see [Asc08],

p. 10). In a way, aleatoricism reflects the shift in natural sciences that took place in

the 20th century – the movement away from strictly deterministic Newton mechanics

towards the more indeterministic quantum mechanics (see [Ess96], p. 21). The
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chaotic and random element introduced by aleatoric music is also perpetuated in

most of the basic algorithms used in automated composition approaches, which will

be further explained in this chapter.

4.1.3. Computational Prerequisites

As a computer essentially does not possess any understanding of musical theory or

even acoustic events, musical parameters have to be converted to input/output pa-

rameters that the machine is able to utilize. This process of finding a sophisticated

parametric representation of music and the mapping between musical values and

their computational counterparts is a pivotal requirement of an automatic composi-

tion system (see [Asc08], pp. 23f). It will be showed in this chapter that different

algorithms allow for different ways to influence the musical output of the algorithm

by altering the input parameters or initial states.

4.2. Algorithms & Input Parameters

4.2.1. Probabilistic Approaches: Stochastic Processes & Markov Chains

Introduction

As outlined in section 4.1.2 (p. 49), the idea of randomness influencing the musical

expression of a composition is no novel concept. However, as arbitrary as the out-

come of a randomly generated sequence of notes would be, the same would apply to

the aesthetic value of such a piece (see [Mir01], p. 61). The great advantage of a

computer in this context is the fact that it can be used to evaluate the output of a

random number generator, or to restrict the algorithm that this generator is based

on itself, so that only those output values coinciding with the composer’s aesthetic

intentions are permitted (see [Mir01], p. 61).

The principles of probability calculus are mathematically well researched, so that

stochastic generators (one that creates musical sequences according to a certain

probability distribution) can be easily constructed. Moreover, stochastic generators

can refer to past events by using conditional probability, that is, their outcome is

affected by preceding results (see [Mir01], p. 62).
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Figure 4.1.: Uniform probability distribution for 12 pitches

Stochastic Processes

Probability distributions can be used to shape the data produced by a random

number generator according to a specified rule. The random variables used can

be discrete (e.g. pitches) or continuous (e.g. durations) (see [Asc08], pp. 27f);

their probability can be manipulated by altering their frequency of occurrence in

the sample space. Thus, for example certain notes or intervals can be preferred over

others (see [Mir01], p. 62). Exemplarily, four common probability distributions will

be discussed in this section. Note that for all distributions it is essential that the

sum (or integral, in the case of continuous random variables) of all probabilities has

to amount to the value of 1.0.

• Uniform Distribution

In a uniform probability distribution, all events have the same likelihood of

occurrence (see [Mir01], pp. 62f). Figure 4.1 shows a discrete uniform distri-

bution, where all pitches in one octave have the same probability.

To produce such a distribution, merely one random number generator is needed

(see listing 4.1).
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Figure 4.2.: Linear probability distribution for 12 pitches

1 f loat un i f o rmDi s t r ibut i on ( )

2 {
3 return random ( 1 . 0 ) ;

4 }

Listing 4.1: Algorithm for uniformly distributed random values ([Mir01] p. 63)

• Linear Distribution

Figure 4.2 displays a linearly distributed random variable, i.e. values on the

left hand side of the abscissa are more likely to occur than those on the right

hand side (see [Mir01], pp. 63f).

A generator algorithm (as displayed in listing 4.2) for such a probability distri-

bution would have to include two random number generators implementing a

uniform distribution, compare their output values and always return the larger

one.
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1 f loat l i n e a r D i s t r i b u t i o n ( )

2 {
3 f loat a = random ( 1 . 0 ) ;

4 f loat b = random ( 1 . 0 ) ;

5 i f ( a > b)

6 return a ;

7 else

8 return b ;

9 }

Listing 4.2: Algorithm for linearly distributed random values ([Mir01] p. 64)

• Exponential Distribution

Exponentially distributed random values occur according to the following equa-

tion ([Asc08], p. 31):

f(x) = λ e−λx ∀x ∈ R : x ≥ 0 (4.1)

The rate of decrease is determined by the magnitude of λ, an increasing value

results in a more rapid decay of probabilities; figure 4.3 depicts such a dis-

tribution. Although this function has no upper limit, very high values are

very improbable to occur (see [Asc08], pp. 31f). A generator algorithm for

exponentially distributed random values is given in listing 4.3.

1 f loat e x p o n e n t i a l D i s t r i b u t i o n ( f loat lambda )

2 {
3 // prov ide a random number g r ea t e r than

4 // 0 and l e s s than 1

5 f loat a = random ( 1 . 0 ) ;

6

7 // d i v i d e by lambda

8 f loat b = a / lambda ;

9

10 // re turn the na tura l l ogar i thm

11 return ln (b) ;

12 }

Listing 4.3: Algorithm for exponentially distributed random values ([Mir01] p. 64)
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Figure 4.3.: Exponential probability distribution for 12 pitches, λ = 0.3

• Gaussian Distribution

This function is known to resemble the value distribution of many natural

phenomena, and is given by ([Asc08], p. 32):

f(x) =
1√
2πσ

exp
[
−(x− µ)2

2σ2

]
(4.2)

The function describes a bell curve (see figure 4.4), with µ being the average

value around which the random values are centered (and the peak of the curve),

and σ representing the standard deviation defining the span of the distribution:

68.26% of all results will be gathered in the area of µ ± σ, and 99.74% of all

occurrences lie within µ± 3σ (see [Asc08], p.32).

There are many other probability distributions that would be worth mentioning here,

e.g. Cauchy, Poisson or Beta distributions. [Asc08], pp. 32ff provides a detailed

examination.

Markov Chains

While the stochastic processes discussed above are independent of past events and

have to be calculated seperately each time they are used, Markov chains incorporate
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Figure 4.4.: Gaussian probability distribution for 12 pitches, σ = 1.0

the potential to include the outcome of preceding events. Thus, they are an exam-

ple of conditional probability systems, where future events can depend on a certain

number of past ones. The amount of past events that such a chain is dependent on

is called its order (see [Mir01], p. 69). Markov chains can be used to model note

progressions, note durations and other musical parameters. The probabilities that

a chain is made up of can be arranged in a transition matrix (see [Asc08], p. 37);

table 4.1 displays an example of a transition matrix of a first-order Markov chain

modeling the note progression probabilities of an arbitrary twelve-tone scale.

State A is called reachable from state B, if it is possible to arrive at state A start-

ing from state B after a finite amount of transitions (see [Mir01], pp. 69f). Two

states are said to communicate, if they are reachable from each other (see [Mir01],

p. 70). This relation plays a crucial role in the dynamics of a Markov chain, because

communicating states can be proven to be reflexive (meaning that one of the states

always communicates with itself), symmetrical (two communicating states can do

so in either direction) and transitive (communicating states can be concatenated to

reach other states) (see [Mir01], p. 80).
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C C# D D# E F F# G G# A A# B

C 0.1 0.02 0.1 0.03 0.2 0.1 0.05 0.25 0.0 0.08 0.02 0.05

C# 0.25 0.02 0.08 0.05 0.2 0.07 0.1 0.01 0.02 0.1 0.0 0.1

D 0.1 0.03 0.15 0.02 0.1 0.25 0.01 0.14 0.02 0.1 0.03 0.05

D# 0.0 0.02 0.03 0.1 0.3 0.1 0.02 0.1 0.03 0.1 0.05 0.15

E 0.1 0.0 0.05 0.05 0.02 0.2 0.03 0.25 0.1 0.05 0.03 0.12

F 0.05 0.0 0.2 0.0 0.05 0.0 0.0 0.2 0.0 0.3 0.0 0.2

F# 0.1 0.15 0.0 0.2 0.05 0.0 0.12 0.1 0.18 0.1 0.0 0.0

G 0.05 0.2 0.15 0.0 0.1 0.05 0.0 0.2 0.05 0.1 0.05 0.05

G# 0.03 0.0 0.1 0.1 0.15 0.07 0.05 0.1 0.2 0.0 0.15 0.05

A 0.14 0.05 0.0 0.03 0.0 0.06 0.05 0.27 0.0 0.15 0.2 0.05

A# 0.18 0.25 0.0 0.07 0.1 0.05 0.2 0.1 0.03 0.02 0.0 0.0

B 0.5 0.0 0.27 0.0 0.03 0.0 0.0 0.0 0.18 0.0 0.02 0.0

Table 4.1.: Example of a first-order Markov chain applied to pitch classes

When designing Markov transition matrices, two requirements should be kept in

mind: First, the sum of probabilities in each row has to amount to 1.0, as with all

probability distributions. Secondly, it is vital to align the probabilities in such a way

that no dead ends are produced, i.e. that the process of selecting the next state ends

up in an infinite loop (see [Asc08], p. 38)

Evaluation

Probabilistic approaches seem appropriate to introduce a touch of randomness to

otherwise predictable processes. Stochastic processes, for example, could prove to

be valuable to influence note lengths or accentuation of a melody. On the other

hand, a well-chosen probability distribution could also determine the overall repre-

sentation of consonance or dissonance in a piece.

The conditional characteristics of Markov chains could be beneficial in constructing

patterns of higher complexity (melodies, harmonies etc.). However, with increasing

order, also the difficulty of designing such chains multiplies. A possible approach

could be a combination of the two concepts: using certain probability distributions

to form the row probabilities of Markovian transition matrices.
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4.2.2. Iterative Approaches: Chaotic Systems & Fractals

Introduction

Iterative approaches utilize outcomes of repeated mathematical procedures where the

output of such a procedure is used as the input value for the next step of the same

procedure (see [Mir01], p. 83). Thus, the process describes a feedback loop, resulting

in the outcome of the previous step influencing the next one. Therefore, one of the

crucial characteristics of iterative approaches is that they are strictly deterministic,

even though their output can range from predictable to chaotic behavior (see [Asc08],

p. 41).

Chaotic Systems

Many natural phenomena which exhibit apparently chaotic, random behavior can

be modeled using iterative processes. As indicated above, one of the main qualities

of chaotic systems is that their output is fully determined (either by one equation

or by a system of equations) by the initial parameters, but at the same time it can

vary to a large degree (see [Asc08], p. 41). The characterizing features of a chaotic

system are its orbit and possible attractors.

The orbit of an iterative process is represented by the set of its possible output

values, (see [Mir01], p. 83). Depending on the initial parameters, three classes of

orbits are possible (see [Mir01], p. 84 and [Asc08], p. 42):

1. orbits converging towards a stable value (called a fixed attractor)

2. orbits oscillating between a limited set of values (periodic attractor)

3. orbits displaying an apparently chaotic behavior (chaotic / strange attractor)

Nonetheless, a chaotic orbit is a necessary condition to describe a chaotic system, but

it is not a sufficient one. Three principal characteristics are used to define whether

a system is behaving chaotically (see [Mir01], p. 84):

1. High sensitivity to initial conditions: As has been pointed out above,

chaotic systems exhibit a high degree of dependence on starting values. This

concept has been illustrated by the metereologist Edward Lorenz using the so-

called butterfly effect : He showed that using a simplified global weather model,
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it was possible to alter the outcoming weather conditions to a great degree by

only slightly changing the initial parameters. The picture he used was that of

a butterfly whose wings’ flapping on one side of the planet could influence the

metereological system on the other side of the planet (see [Mir01], pp. 84f).

2. Period doubling process: Chaotic systems show a behavior called period

doubling, meaning that the number of points in the orbit double successively

before they become chaotic. For example, with a certain initial condition a

chaotic system can converge towards a fixed attractor, with a slightly different

initial condition its attractor begins altering between two values, then four,

eight and so on (see [Mir01], p. 85).

3. Sporadic settlements: Lastly, chaotic systems possess the ability to establish

quasi-stable regions after chaotic motion, which soon arrive at the process of

period doubling and chaotic behavior again (see [Mir01], p. 86).

To illustrate these properties, two exemplary chaotic iterative systems are described

in the following enumeration.

• Logistic Equation

This iterative function describes a model for population growth using the fol-

lowing equation (see [Mir01], p. 86).

xn+1 = r · xn(1− xn) ∀r ∈ R : 0 ≤ r ≤ 4 (4.3)

While the details that form the theoretical background of this model are not rel-

evant in this context, this equation is quite apt to illustrate the above described

properties of chaotic systems. Figure 4.5 displays the attractor’s bifurcation

diagram for different values of r.

The orbit of this iterative function clearly exhibits a high degree of sensitivity

to its initial conditions: As can be seen from the diagram, different values of r

produce either fixed attractors (1 < r < 3), periodic ones (3 < r < 3.569), or

chaotic ones (3.569 < r < 4). The period doubling property can be observed

between 3 < r < 3.569: first the periodic attractor is formed by only two points

which then bifurcate to a four-, eight-, 16- and 32-point attractor. Finally, the

attractor exhibits sporadic settlement in some regions between 3.569 < r < 4:

for a short period, it shows an oscillating motion which then becomes chaotic

again (see [Asc08], p. 43).
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Figure 4.5.: Bifurcation diagram of the logistic equation [Bra08]

• Hénon Attractor

This attractor, also known as the strange attractor, models the trajectory of

an object orbiting a gravitational center (see [Mir01], p. 86). The model is

composed of the two equations (see [Asc08], p. 47):

xn+1 = yn + 1− ax2
n

yn+1 = bxn

a, b ∈ R : a, b > 0

(4.4)

The behavior of the system is again dependent on the constant factors a and

b, figure 4.6 shows the two-dimensional attractor map for the values a = 1.4

and b = 0.3. The nature of the attractor, i.e. whether it is fixed, periodic or

chaotic, mainly depends on the value of a (see [Asc08], p. 47).

Strange attractors are also known to generate self-similar structures, that is,

patterns that display a periodic motion which produces similar, but nonetheless

different sequences of output values (see [Asc08], p. 45).
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Figure 4.6.: Diagram of the Henon attractor for a = 1.4 and b = 0.3 [Wei08c]

Fractals

Fractal geometry was proposed by Benoit Mandelbrot in 1982 to overcome the short-

ages that traditional, Euclidean geometry exhibits when it comes to describing nat-

ural objects such as clouds, coastlines, trees and so on (see [Mir01], p. 90). Fractal

shapes contain self-similar patterns, that is, structures which repeat at different

sizes of an object; figure 4.7 shows four well-known examples of such structures. A

typical realistic example of fractal geometry is the coastline paradox : the measured

length of a coastline depends on the precision of the ruler – the shorter the ruler,

the longer the total length (see [Wei08b]). A possible method of constructing such

patterns is the use of iterative functions (see [Mir01], p. 90).

Self-similarity itself can be divided into three types (see [Mir01], p. 90):

1. Exact self-similarity: The same structure is reproduced at every scale of the

fractal, as in the Koch snowflake.

2. Statistical self-similarity: This means that there is no exact reproduction

of the basic shape at different levels, but it is strong enough to be identified.

Many natural structures (e.g. plants) exhibit statistical self-similarity.

3. Generalized self-similarity: Transformations are applied to the scaled copies

of a structure; such a type of self-similarity is more difficult to recognize.
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Figure 4.7.: Illustrations of the Gosper island, Koch snowflake, box fractal and Sier-

pinski sieve [Wei08b]

The musical potential of fractals seems to be a controversial issue. Miranda argues

that the beauty that some illustrations of fractal patterns show cannot be easily

transferred to the field of music, as that beauty emanates from observing the whole

picture at the same time. Music, on the other hand, is a time-based art so that a

mere transformation from the visual to the acoustic domain would result in unintel-

ligible structures (see [Mir01], p. 95). A more promising approach is applying the

iterative basic principles of fractals on a musical motif: By transferring geometrical

transformations, such as translation, reflection and rotation, to the area of music,

fractal-like patterns can be constructed (see [Mir01], pp. 95f). Thus, main ideas of

serialism (see section 4.1.2, p. 49) can be extended and used by a generative system.

Evaluation

The possibilities for algorithmic composition clearly lie within the self-similar quali-

ties of iterative processes. Chaotic as well as fractal systems provide structures that

show a certain degree of similarity but never repeat in the exactly identical way –

a property that is considered to be an essential ingredient of pleasant music (see

[Mir01], p. 88). While fixed attractors will almost certainly result in a rather boring

musical experience, periodic (especially those with a large period) and chaotic at-

61



4 - Algorithmic Composition

tractors can of course be regarded as a possibly valuable source of musical structures,

such as note successions, durations etc. (see [Mir01], pp. 88f).

A caveat that has to be taken into consideration, however, is the fact that chaotic

systems such as an implementation of the logistic equation or the Hénon attractor

discussed above, will result in musically meaningless or arbitrary outcomes. The

reason for this lies in the fact that as yet there exists no practicable method for uti-

lizing the output of a process that was not originally devised for musical applications

for such a system (see [Mir01], p. 89). Another drawback that comes with chaotic

systems is grounded in their high degree of sensitivity regarding input values – de-

pending on the iterative process in question, it might be problematic to determine

whether an attractor will exhibit fixed, periodic or chaotic behavior before the first

few iterations have completed (see [Mir01], p. 89). However, the potential of chaotic

systems to produce fascinating patterns could also be used to create variations of an

existing musical melody or rhythm (see [Asc08], p. 45).

Concerning fractal shapes, a possible application seems to be the calculation of

rhythmic structures by utilizing the self-similar nature of fractals. The superposi-

tion of self-similar patterns is considered to generate interesting structures, which

could be easily achieved using iterative processes (see [Mir01], pp. 96f). Also, the

transformation of existing patterns using fractal algorithms seems a useful approach

in this context.

4.2.3. Artificial Intelligence Approaches: Artificial Neural Networks

Introduction

Generally speaking, the probabilistic and iterative approaches discussed in the pre-

ceding sections are strictly rule-based. The main limitation of such a technique

seems to be obvious: Even though music of all epochs follows certain rule systems,

the aesthetic value it contains cannot be solely derived from such a rule set (see

[Mir01], p. 103). In this context, neural networks suggest a different approach as

compared to the traditional theory of computing including the conventional central

processing unit (CPU) vs. memory approach (see [Mir01], p. 103 and [Asc08], p.

52).
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Artificial Neural Networks

The main concept consists of a quasi-reverse-engineering of the human brain. Other

than traditional imperative environments, which use programming techniques such

as designing functions and procedures that are then executed in the CPU, Artificial

Neural Network (ANN) – also known as Connectionist models or parallel distributed

processing models – comprise a system of many interconnected units, resembling

human neurons and synapses (see [Asc08], p. 52). Such networks are programmed

by presenting them existing examples – they are actually able to learn the implicit

rules that are contained within a problem, or rather lead to its solution (see [Mir01],

p. 103).

The principal building block of an artificial neural network is constituted by the

replication of a human neuron, the so-called perceptron (see [Mir01], p. 106). Hu-

man neurons are interconnected via synapses and may stimulate other neurons by

sending an electrical pulse through its axon. The receiving neuron may be activated

to propagate the signal if the sum of incoming stimuli causes a sufficient deviation of

its equilibrium potential (see [Mir01], pp. 104ff and [Asc08], p. 53). The perceptron

has been modeled in a way that resembles this concept (see figure 4.8 for an illus-

tration): Incoming signals xj represent the electrical pulses arriving at the neuron

which are then multiplied by weighting factors wj . These factors can possess either

positive or negative values, depending on whether the synapse has excitatory or in-

hibitory character (i.e. the incoming signals are amplified or attenuated, see [Mir01],

p. 107). The weighted signal values are summed up at the summing junction and

propagated if the value fulfills the activation function F (see [Mir01], p. 107):

y = F (
n∑
j=1

wjxj) (4.5)

This activation function F strongly influences the perceptron’s behavior and re-

sembles a biological neuron’s sensitivity for incoming electrical depolarizations, also

known as the firing threshold. It typically takes values between 0 and 1 or -1 and

1 (see [Mir01], pp. 107f). The three basic types of activation functions are thresh-

old, piece-wise linear and sigmoid. A threshold activation function provides a hard

threshold value that the sum of incoming weighted signals has to exceed in order

to produce an output value of e.g. 1. Piece-wise linear functions possess a range of

input values where the input values are linearly weighted and propagated. Sigmoid
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Figure 4.8.: Diagram of a single-layer perceptron

functions present a soft, smooth threshold and are widely used (see [Mir01], pp. 108f

for more details).

More sophisticated neural networks are made up of multiple instances of a per-

ceptron which are organized in layers – called Multi Layer Perceptron (MLP), for

an example illustration see figure 4.9. Generally, those layers are divided into input

and output layers, as well as an arbitrary number of hidden layers in between (see

[Mir01], p. 110). A further classification of such networks can be made according to

their internal connections (see [Mir01], p. 110):

• Feed-forward networks contain no feed-back loops, the information flow

happens only in one direction.

• Feed-back networks on the other hand can include such feed-back loops; a

single node can thus even be connected to itself.

• In fully connected (as compared to partially connected) networks, all the

nodes of one layer are linked with all the nodes of every adjacent layer.
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Figure 4.9.: Basic Multi Layer Perceptron
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Network Training

As indicated above, an artificial neural network is programmed by training. Al-

though there are several learning techniques, supervised learning seems to be the

most appropriate for computer music purposes (see [Mir01], p. 112). In this case,

the network is presented a set of examples with initial input values and a desired

output. The weighting factors of the network are initialized randomly, but have to

be changed by the network with each iteration in order to produce the desired output

values. This process is called error correction, and mostly uses the back propagation

algorithm (see [Mir01] pp. 112f and [Asc08], p. 55). The starting point of this

algorithm is the calculation of an error signal ek at time n for each neuron k (see

[Mir01], p. 113):

ek(n) = dk(n)− yk(n) (4.6)

In this equation, dk represents the desired output of the neuron whereas yk represents

its current output. The goal of the algorithm is to minimize the total error denoted

by the formula

J = E

[
1
2

∑
k

e2k

]
(4.7)

which includes the sum of the squared individual errors ek and the expected value

E (see [Mir01], p. 113). The error correction itself takes place according to the

following rule:

∆wkj(n) = η ek(n) xkj(n) (4.8)

The constant η denotes the rate of learning and has to be used with caution: too

small a value will make the learning process smooth, but also time consuming; too

large a value will cause the process to diverge and produce an unstable behavior of

the network. The parameter xkj stands for the input signals arriving at the neuron

(see [Mir01], p. 113).

Musical Use

Regarding the construction of an ANN for musical use, several considerations have to

be made, e.g. about the amount of layers, neurons and whether to include feed-back

loops etc. (see [Asc08], p. 56). Several approaches have been made to devise musical
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ANNs; Miranda describes a general architecture: the output layer of such a network

could be used to produces pitches, durations etc., while the input layer could be fed

with delayed outputs of the network. Thus, the outcome can be influenced by several

preceding notes, depending on the number of delay units (see [Mir01], p. 114). To

train such a network in order to produce a desired melody, several examples have

to be fed into the network; after each step, the synaptic weights have to be modi-

fied in order to produce the next note of the example melody (see [Mir01], pp. 114f).

One advantage of ANNs concerning the generation of music lies in their ability

to discover inherent patterns and organizational structures in the training material

(see [Asc08], p. 58). Thus, the network is able to construct new motifs from the

learned rules. However, this ability is influenced by the amount of hidden neurons in

the network’s architecture. Too large a number of hidden neurons combined with a

small number of examples will result in the network solely memorizing those exam-

ples. A better approach seems to be to devise a network with as small a number of

hidden neurons as possible, while feeding it a large amount of examples (see [Asc08],

p. 58).

Evaluation

Even though ANNs seem to have a large potential regarding the automated composi-

tion of music, there are some caveats that have to be taken into consideration. First,

designing an ANN always involves a training stage, and there may be applications

where either there is no time for such a learning process to take place, or it is simply

undesirable out of conceptual reasons. Neural networks are therefore considered not

a substitute for, but a beneficial extension to the rule-based approach (see [Mir01], p.

103). Moreover, there are applications where ANNs prove to be useful in connection

with artificial life approaches (see section 4.2.4).

It should also be remarked that ANNs offer the possibility to be trained in such

a way as to produce soundalikes of a certain style, or even of a particular piece of

music (see [Mir01], pp. 113f) – a valuable feature for many media music settings.

Finally, an ANN can also be regarded as a classificator, e.g. for the consonance

of an interval (see [Mir01], pp. 115ff) – a quality that should also be evaluated

regarding the prototype construction.
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4.2.4. Artificial Life Approaches: Cellular Automata & Genetic

Algorithms

Introduction

Recently, aside from artificial intelligence methods, also Artificial Life (Alife) ap-

proaches are gaining importance. These techniques include theoretical studies of life

and the application of these theoretical backgrounds on experimental lifelike systems

(see [BW07], p. 1). Here, processes of interest are the interaction of the system’s

individual components, the interconnection of such systems and the manifestation

of global behavior (see [Mir01], p. 119). The goal of the alife approach is to provide

a means to examine living systems using a computer as a platform, which again may

serve as a research instrument for diverse fields, such as biology, medicine, social

sciences and musicology (see [Mir01], p. 120).

In the computer music context, the probably most interesting cases for research

are evolutionary and adaptive systems, that is, systems which are able to respond to

their surroundings by adapting and evolving, out of the need to survive (see [BW07],

p. 1). In particular, a goal could be to devise a virtual world populated by virtual

musicians, composers and listeners incorporating social, ecological or psychological

constraints, so as to investigate the system-inherent processes which foster the evolu-

tion of music (see [Mir01], p. 120). This section includes an introductory description

of two alife paradigms: cellular automata and genetic algorithms.

Cellular Automata

Cellular Automata (CA) are models of dynamic systems which are used to examine

complexity and self-organzation of biological processes or populations (see [Asc08],

p. 59). Such automata possess certain limitations: They can be used to model sys-

tems where space and time are discrete, and the elements’ (called cells) conditions

are derived from a finite set of discrete states (see [Mir01], p. 121).

A cellular automaton’s graphical representation consists of a grid, each field sym-

bolizing a cell in a particular state. The cells’ evolution takes place in discrete time

steps, wherein all cells’ states are updated simultaneously according to a predefined

set of transition rules, which can depend on a cell’s direct neighborhood as well as

its current state (see [Asc08], p. 59 and [Mir01], p. 121). The most notable ex-
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Figure 4.10.: 18 exemplary rulesets for elementary one-dimensional CA [Wei08a]

ample of such a system is John Conway’s Game of Life, a two-dimensional cellular

automaton which has been used e.g. by Miranda for compositional purposes (see

[Mir01], pp. 124ff). This section will exemplarily cover a description of elementary

one-dimensional CA, and possibilities for their application for the purpose of gener-

ating musical patterns.

Elementary one-dimensional CA feature a set of n cells neighboring each other and

two possible states (0 and 1) for each cell (see [Asc08], pp. 60f). The transition

ruleset of such an automaton possesses a radius r = 1, i.e. only a cell’s own state as

well as the two nearest neighbors’ values are taken into account for the calculation

of its succeeding state. There are 23 = 8 possible states for the three adjoining cells

(000, 001, 010 and so on), therefore 28 = 256 rulesets for elementary one-dimensional

CA can be constructed (see [Wei08a]). The rulesets are named by the decimal repre-

sentation of their binary rule table (e.g. 000111102 stands for a rule 30 automaton,

see [Wei08a]). A selection of rulesets is shown in figure 4.10, and illustrations of the

corresponding CA started with a single living cell in figure 4.11.

Those rulesets are able to produce a variety of structures, including fractal ones (e.g.

rule 90 or 150 automata) as well as chaotic ones (e.g. rule 30). Moreover, in some

cases the same structure can be spawned by different rulesets (e.g. rule 18, 90, 146

and 218) (see [Asc08], pp. 61f and [Wei08a]). Rule 54 and rule 110 also seem worth

considering for compositional purposes, as they produce a stable structure on the

one hand while also including significant variations on the other hand (see [Asc08],

p. 62).
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Figure 4.11.: 18 exemplary illustrations of elementary one-dimensional CA [Wei08a]
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The transformation of a cellular automaton’s output to meaningful musical val-

ues can take place in multiple ways: Living cells’ coordinates can be converted to

pitches or intervals, as in Miranda’s CAMUS (see [Mir01], pp. 127ff). Furthermore,

CA can also be used for sound synthesis, by simply applying the automaton’s grid

onto a wave table stored in the computer’s memory – a possibility to generate a

large variety of interesting sounds (see [Asc08], p. 67).

Genetic Algorithms

Another type of evolutionary computing method is represented by Genetic Algo-

rithms (GA). Evolutionary biological processes such as reproduction, selection or

mutation are modeled in order to stimulate the creation of an optimal (fittest) so-

lution to a given problem (see [Mir01], pp. 129ff). In general, GA can be regarded

as search algorithms which are suitable for exploring a large search domain (see

[Asc08], p. 68). They use a community of many individual possible solutions, each

of which contains a codified version of the individual’s properties (mostly a binary

representation). In analogy to biological nomenclature, this representation is called

genotype, comprising several genes (see [Asc08], p. 68). After the population has

been initialized randomly, it iterates over a reproduction cycle, until an optimized

solution has been found according to predefined fitness criteria (see [Mir01], pp. 131f

and [Asc08], pp. 68ff):

1. Fitness Evaluation

The current population’s fitness is rated according to the mentioned fitness

criteria. As the initial population will probably fail to provide an optimal

solution, the process continues by ranking the individuals according to their

fitness and then proceeding to the selection phase. If, however, the fitness

criteria are met, this step is also the exit point of the loop.

2. Selection

An arbitrary number of entities are chosen from the population (in the sim-

plest case using stochastic methods which employ the computed ranking from

the preceding step) which form the mating pool to breed a new generation of

individuals in the next phase.
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3. Reproduction

Pairs of individuals are aligned at random which mate by exchanging parts of

their codified genotype and thus forming the offspring.

4. Mutation

The simplest way of implementing a mutation on binary codified genotypes is

altering the value of a single bit according to a predefined mutation probabil-

ity. It has to be considered that too high a probability will produce children

that bear only little similarity with their parents, thus distorting the selection

process.

After the last step has completed, the offspring is added to the population, and the

reproduction cycle starts over with a new generation of individuals. Those entities

that were not selected for reproduction in the preceding cycle iteration die in most

implementations of the algorithm, although there may be applications where they

survive (see [Mir01], p. 132).

Fitness Evaluation Techniques One of the crucial aspects in the process is the

evaluation of fitness, which can take place automatically (involving a computer rou-

tine calculating the fitness function) or interactively (including an expert human

user’s knowledge to select the most appropriate individuals) (see [Asc08], p. 71).

Automatic fitness assessment methods include methods of deterministic fitness eval-

uation (by applying a mathematical function to obtain a fitness measure), formalistic

fitness evaluation (by comparing individuals to a ruleset that may e.g. resemble a

certain musical style), or the measuring of fitness via ANN (which offers the benefit

that no precise rules have to be formulated as to what constitutes good music) (see

[Asc08], pp. 71ff).

Interactive Genetic Algorithms, on the other hand, make use of a human user’s

(or a group of human users) knowledge to judge the individual solutions for their

musical content. Thus, the process gains subjectivity as compared to automatic

fitness evaluation methods, but it also involves the drawback that a manual evalu-

ation may slow down the evaluation procedure considerably. This issue can be at

least minimized by involving an automatic assessment method first, and afterwards

presenting a reduced set of candidates to the evaluating user (see [Asc08], pp. 73f).
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Musical Application The process of composing can be viewed as a search problem

– to find the best (or most suitable) composition out of many possibilities. There-

fore, GA can be used as a powerful means to assist in filtering the optimal musical

structure (see [Asc08], p. 68). To accomplish this task, some preprocessing steps

have to be taken before applying a genetic algorithm.

First, the search domain has to be specified. This can be made up of single notes,

whole melodies, or it can be organized hierarchically, traversing many levels of mu-

sical structure (see [Bir03], p. 101). Generally, a preselection of apt individuals can

also take place, e.g. by allowing only a selected set of pitches (see [Asc08], p. 70).

Moreover, in order to generate musically meaningful structures, a codification of

musical values has to be introduced. Usually this is done by coding different mu-

sical attributes such as pitch, dynamics and so on into the genotype in a binary

string form. A basic principle that should be followed is to use the smallest alphabet

possible to encode the individuals’ characteristics (see [Mir01], p. 133).

Evaluation

The rich amount of applications of GA (e.g. [BK08], [Bir03], [BL06], or [Mir01],

p. 199) displays their great potential for generative music purposes. The issues

concerning the implementation of such algorithms lie in the complexity of finding a

suitable fitness evaluation method (see [Asc08], p. 76). If the evaluation function

is designed in too simplistic a way, it will possibly yield diverging results, as the

evolution of the population is insufficiently directional. However, a deterministic or

formalistic representation of musical value or usefulness is tricky to formulate, as it

involves a high degree of subjectivity and many composers and musicologists still

argue over this topic. The ANN approach for evaluating fitness seems promising,

but it also has to be trained (again by a human), which again includes the mentioned

subjectivity.

A different possible approach is the development of distributed, interacting agents

which are evolved by evolutionary techniques and create musical content together,

by listening and judging the other agents’ output (see [Asc08], p. 75).
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The usefulness for the prototype to be developed depends on the restriction of the

search domain on the one hand (e.g. only consonant notes of a scale etc.) and on

the possibility to define an appropriate fitness evaluation function, which seems to

be the harder task.

One-dimensional CA, however, seem to be an interesting technique for the gen-

eration of rhythmic structures, as they are able to produce self-similar output of

fractal form. By changing the ruleset or the initial conditions, rhythmic complexity

could be manipulated.
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5.1. Related Work

As has already been pointed out, a large variety of applications and projects related

to the topic of this thesis exist. Some of them, covering aesthetical, technical and

practical aspects are presented and evaluated in this section.

CAMUS In this generative music software, two similar two-dimensional cellular

automata are used for music composition: the Game of Life and Demon Cyclic

Space (see [Mir02], p. 173).

The first, Game of Life, simulates the evolution of an array of virtual organisms

whose survival and birth rates are determined by their eight nearest neighbors on

a two-dimensional grid (see [Mir02], p. 173). In CAMUS, it is used to generate

note triples by determining the horizontal and vertical coordinates of living cells

and transforming them to musical intervals. The timing of the resulting note pro-

gressions on the other hand is determined by the cell’s neighbors’ states (see [Mir02],

p. 174).

In the Demon Cycling Space CA, more than two possible cell states exist, which

are labeled by numbers from 0 to n − 1. The evolution rules again define how the

cells change their states; however, in this case those rules are not set up by the

neighboring cells’ states. Here, cells with state k will dominate cells with state k−1,

that is, change their state to k in the next evolutionary step. Since the automaton

is cyclic – state n − 1 is not the end of the chain, but it is dominated by state 0

– the cells’ evolution is an infinite process (see [Mir01], p. 126). In CAMUS, this

specific automaton is used to determine the instrumentation of the generated music

by assigning different instruments to different states (see [Mir01], p. 128).
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Apparently, cellular automata show similar qualities in organisational structures

as compared to musical patterns and sounds. Nevertheless, it seems that such au-

tomata are more apt to model micro-scale than macro-scale structures (see [Mir02],

p. 176).

Real Time Composition Library This library (RTC-lib1) was initiated and has

been further developed by Karlheinz Essl since 1992, and can be used within the

Max/MSP programming environment. It is intended to fill the gap between the

strictly MIDI-control-based Max system and additional compositional requirements

(see [Ess96], p. 36).

It includes random and list operations as well as harmony, rhythm and envelope

generators (see [Ess96], pp. 40f). The great advantage of this library is that it is

integrated in the well-known and widely used environment of Max, which makes it

ideal for rapid prototyping and bottom-up approaches to algorithmic composition.

Moreover, it is well documented, with existing tutorials and example pieces by the

main developer. The library thrives on its author’s experience in the programming

and design of structure generators and generative pieces, making it an ideal choice

for many (but not all) algorithmic applications.

AMEE The Algorithmic Music Evolution Engine (AMEE) is a system developed

by the Department of Computer Science of the University of Western Ontario (see

[HDK07]). It was devised with the purpose to dynamically compose music for inter-

active applications, e.g. computer games, or as the basis for novel composition tools

(see [HDK07], p. 52).

The system’s architecture includes a modeling of real-life musical entities, such as

Musician, Instrument, Performer etc., which play together in a collaborative man-

ner. Furthermore, pattern libraries that serve as motif repositories of existing or

precomposed pieces are part of the system, enabling the reuse of certain composi-

tional elements. The framework also contains an emotion mapper which is used to

affect music generation in real-time (see [HDK07], p. 54).

1http://www.essl.at/works/rtc.html
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Although there is no detailed explanation of the underlying algorithms employed,

the value in this seminal development clearly lies in the flexible and extensible de-

sign of the system, which allows for the implementation of extension components

(see [HDK07], p. 56), as well as the somewhat pioneering application of emotional

parameters on generative music.

Continuous-Time Recurrent Neural Networks Oliver Bown and Sebastian Lexer

[BL06] researched the development of computer software agents exhibiting musi-

cality, and developed a generic behavioral tool using Continuous-Time Recurrent

Neural Networks (CTRNN) (see [BL06], pp. 1f). CTRNN are a special type of neu-

ral network whose internal state is constantly updated using a differential equation,

and enables recurrency, in particular the connection of any node to itself (see [BL06],

p. 2).

Networks of different behavioral types were investigated, one of the most interesting

ones being networks that produce different output states according to the trajectory

that the input states pass (e.g. input state A followed by input state B leads to a

different output than when followed by input state C, see [BL06], p. 4).

The very valuable aspect of their approach, however, lies in leaving the evolution of

desirable behaviors to the users of such an application themselves, for which they

employed a genetic algorithm (see [BL06], p. 6). Moreover, another important in-

sight seems to be the fact that the authors envision a system that is capable of

involving the user’s as well as the network’s evolution and lead to a collaborative,

coexistential approach (see [BL06], p. 12).

5.2. Requirements & Limitations

In order to construct a software prototype for the automated generation of media

music, several prerequisites and restrictions have to be considered. Technical re-

quirements that have to be met were described in section 3.2.3. It seems advisable

to devise a modularized structure for the prototype, wherein different core function-

alities can be integrated. As a programming platform, Max/MSP2 is chosen, because

it facilitates rapid prototyping by providing a graphical development environment

2http://www.cycling74.com/products/max5
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for interactive media applications. Furthermore, with the mxj Java wrapper class, a

decent possibility to include external code on a multi-platform basis exists.

To demonstrate how the principles of algorithmic composition can be used to yield

meaningful musical expressions, a classical electronic music setup using four instru-

mental voices (drumkit, bass, pad, lead sound) is chosen. The prototype is intended

to create a stream of MIDI note events for each voice which can easily be integrated

into any audio sequencer program, or directly connected to a sound-producing soft-

ware synthesizer or sampler. The musical output is intended to be useful as a music

bed contributing to the overall mood of a product presented in any medium involv-

ing audio components.

Some issues have to be expected concerning the application of volume values to

the instruments. As MIDI note streams contain loudness (velocity) information,

the transmission of relative volume values is generally possible. However, any soft-

ware or hardware sound-producing device, and every audio sequencer in particular is

equipped with a volume-control interface, so that the relative volume values can be

easily overruled by the user. While it is on the one hand possible to affect the overall

relative velocity values of the respective instruments, it is impossible to guarantee

a certain mix of instrument volumes solely by using the MIDI protocol’s inherent

possibilities. Although the mix of instrumental voices could be an effective means

to influence the emotional perception of the produced music, this quality of the re-

sulting music track is mostly determined by the arranger, not by the composer. In a

standalone system accompanying e.g. a computer game or an interactive installation,

this feature should of course be taken into consideration.

5.3. User Interface

The user interface was developed on the basis of Russell’s circumplex model, con-

taining a two-dimensional area where the valence axis is mapped on the horizontal

one, and the arousal axis on the vertical one. Thus, the user can freely decide on

the degree of valence and arousal by clicking or dragging his mouse in this area, and

does not have to interfere with or understand the system logic used to generate note

sequences.
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Figure 5.1.: Prototype user interface

Aside from the ability to turn each instrument on or off using a toggle switch, it

is also possible to influence the meter and tonic keynote parameters, as well as the

lead voice’s register (see next section). The patch is started and stopped by a click

in the respective start/stop toggle box in the top area of the interface, or by simply

hitting the computer’s space bar. Finally, in the right top corner of the prototype

patch there is a dropdown menu allowing the user to assign the MIDI output device

that he wants to use. It has to be remarked, though, that the prototype is capable of

producing music in a reasonable way without any user interaction. Figure 5.1 shows

a screenshot of the prototype’s user interface.

5.4. Modules

This section will cover the overall architecture of the prototype, which has been split

into six modules, each encapsulating a certain functionality. Complete Java code

listings can be found in appendix B beginning on page 114. All range and register

differences mentioned in this section refer to a root MIDI note value of 60, which

corresponds to the pitch of C4.
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5.4.1. Global Parameters

This module provides several initial values and weighting factors which are needed

for the computation of note events by the instrument modules. These parameters

include

• the key note (represented by its MIDI value)

The default value for this parameter is 60 (which corresponds to C4), and can

be altered by the user using a keyboard user interface component (see following

module).

• the mode (represented by an integer: 0 for major, 1 for minor)

According to the position on the valence axis, the instruments are required to

produce either major or minor melodies and chords. The threshold is set to

the arbitrary value of 20, resulting in a slight predominance of the minor mode

on the valence axis.

• the time difference between pulses (measured in milliseconds)

This value is retrieved by mapping the position on the arousal axis onto a scale

of 50 to 150 bpm, which is afterwards converted to the time difference between

1/8 notes in milliseconds.

• the peak volume to be achieved by all instruments (provided as a MIDI velocity

value)

To determine the overall volume of the produced music, the arousal axis is

mapped on a dB range of -6 to 0, which is then converted to an amplitude

value, and afterwards returned as a MIDI velocity value.

5.4.2. User-Definable Parameters

The following parameters are definable by the user:

• Meter: Because of the cross-correlations observed in chapter 3, it seemed ad-

visable to leave the decision, which meter to employ to the user. Possible

values are 3/4 to 7/4 meters.

• Tonic keynote: Even though the patch is initialized with a tonic of C, it is

possible to overrule this pre-definition.
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• Lead register: Regarding the register parameter, it seemed apparent from chap-

ter 3 that a distinct correlation cannot be determined. Furthermore, several

instruments possess no, or a rather fixed register, as do the drumkit or the

bassline. Since the pad instrument utilizes chords with wide range, the regis-

ter parameter doesn’t apply to it as well, leaving the lead voice’s register to

the user’s taste. Possible range values include -1 to +2 octaves.

5.4.3. Bass

While the use of several instruments may be highly dependent on the style or genre

of a piece of music, basslines seem to be omnipresent in contemporary music culture.

Because of the necessity for a sonic fundament, and because of the simplicity that

many basslines often display – they are mostly monophonic, because low-pitched

chords, if they can be disassembled by the listener at all, sound rather dissonant (see

[Raf02], p. 100) – this module was the first to be implemented during the prototype

development phase; the inherent parts will be explained here.

Figure 5.2 shows a flowchart of the bass module’s note event calculation scheme.

It relies on a Hénon map algorithm for the generation of pitches, triggered by a

musical pulse. The HenonMap object is initialized with values a = 1.4 and b = 0.3

(similar as in [Asc08] pp. 81f); listing 5.1 provides an overview of the used Java

code. Its output between -1.3 and 1.3 is mapped on a scale between -3 and 12, thus

generating an interval value in semitones which is added to a key note afterwards.

The resulting note’s dissonance factor is classified by the mode (minor or major);

afterwards the pitch is adjusted, depending on the amount of dissonant notes al-

lowed to pass the classifier. The percentage of dissonant notes that are not affected

by the classifier is determined by the position on the valence axis, resulting in a

value of 80% to 20%. The melodic range occupied by the bassline is also defined by

the valence value, ranging from 1 octave for rather negative moods to 2 octaves for

positive moods. To obtain this effect, a randomized multiple of 12 semitones (either

0 or 12) is added to the generated note when the user places the knob in the right

half of the interface.
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Figure 5.2.: Flowchart of the bass module

1 public class HenonMap extends MaxObject {
2

3 private f loat a ;

4 private f loat b ;

5 private f loat x ;

6 private f loat y ;

7

8 public HenonMap(Atom [ ] args ) {
9 /∗ code omit ted ∗/

10 }
11

12 /∗∗
13 ∗ produce next i t e r a t i o n o f Henon map

14 ∗/
15 private void generate ( ) {
16 // app ly henon formulas

17 f loat lastX = x ;

18 f loat lastY = y ;

19

20 x = lastY + 1 − a ∗ ( f loat ) Math . pow( lastX , 2) ;

21 y = b ∗ lastX ;

22 }
23

24 public void i n l e t ( f loat f ) {
25 /∗ code omit ted ∗/
26 }
27

28 public void bang ( ) {
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29 generate ( ) ;

30 o u t l e t (0 , x ) ;

31 o u t l e t (1 , y ) ;

32 }
33 }

Listing 5.1: Java code of the HenonMap class

The second step, the computation of the note’s duration, takes into account rhythmic

complexity, determined by the position on the valence axis, and the note’s articu-

lation, according to the position on the arousal axis. To achieve a representation

of rhythmic complexity, the valence value is mapped on a scale between 4 and 1,

which feeds the standard deviation value of a Gaussian distributed random vari-

able with mean 0. Its absolute value is taken and rounded, so as to determine the

amount of pulses that this note is going to occupy. The current note’s articulation

is represented by the percentage of the absolute duration, and is derived from the

arousal value. Low arousal values will produce an average relative note length of

85%, whereas high arousal values result in an average length of 55% – representing

legato and staccato articulation. This mean value is again assigned as the mean

value of a Gaussian distribution with standard deviation 0.3, so as to randomize the

relative note lengths. The output is then multiplied with the absolute note length

to obtain the final duration value.

Finally, the note event’s volume is composed of the peak MIDI velocity defined

in the global parameters module, and a factor between 0 and 1 describing the note’s

accentuation. This value is again extracted from the current arousal value and fed

into a Gaussian distribution object with mean values between 0.85 and 0.7, and a

standard deviation between 0.2 and 0.05. The resulting factor denotes whether the

note progression displays high or low accentuation, representing high and low arousal.

The resulting pitch, duration and volume values are combined to a MIDI note event

and sent to the MIDI output device of Max/MSP.

5.4.4. Pad

A pad instrument is often used in electronic music to provide a background sound

sphere to the music, often composed of chords which are changing only slowly and
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Figure 5.3.: Flowchart of the pad module

almost imperceptibly (see [Raf02], pp. 242f). Therefore, the pad module is set up in

a similar way compared to the bass module, with three major differences: Because

of the slowly evolving structures, the module abandons the concepts of articulation,

rhythmic complexity and accentuation.

Figure 5.3 displays the main functionality of the pad module as a flowchart. Other

than in the bass module, two HenonMap objects, one initialized with a = 1.064 and

b = 0.3, the other with a = 1.4 and b = 0.3, are used to produce four notes to form

a chord. The melodic range, according to the valence axis, varies between 1 and 3

octaves, while the harmony factor determines the amount of dissonant notes that

are allowed to pass the mode classifier (as described above in the bass module).

The chord’s duration has been fixed to a value resembling two bars (or the respective

number of pulses according to the specified meter), while the volume matches the

peak MIDI velocity. Using these values, a MIDI note event is assembled and sent to

the MIDI output device.

5.4.5. Drumkit

For the creation of drum patterns an elementary one-dimensional cellular automaton

was chosen, because of its potential to produce fractal, self-similar structures (see

section 4.2.4). This particular quality is considered to be of high relevance for a

generally rhythm-dominated voice, such as electronic percussion. The computation
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algorithm involves the initialization of 10 adjacent cells, and a default ruleset. The

ruleset can be altered by sending a list of 8 binary integer values (0 or 1) to the

inlet of the mxj object. The automaton evolves by applying the current ruleset on

the cell population each time a bang is sent to the object’s inlet (see listing 5.2).

The resulting cell states are then mapped onto MIDI percussion instruments so as

to produce a rhythmic pattern.

In order to vary the rhythms produced by the algorithm, the ruleset used to calculate

evolving generations of cell states is altered periodically, depending on the rhythmic

complexity according to the valence value. The accentuation of the drumkit’s gen-

erated notes is affected by a Gaussian distributed random variable, similar to the

bass module.

1 public class CA 1D extends MaxObject {
2

3 private int [ ] c e l l s ;

4 private int [ ] r u l e s e t ;

5 private int columns ;

6

7 Random r = new Random( ) ;

8

9 public CA 1D(Atom [ ] args ) {
10 /∗ code omit ted : i n i t i a l i z a t i o n o f d e f a u l t c e l l s and r u l e s e t ∗/
11 }
12

13 /∗∗
14 ∗ app ly incoming l i s t as new r u l e s e t

15 ∗/
16 public void l i s t (Atom [ ] args ) {
17 // f i l l r u l e s e t wi th l i s t arguments

18 for ( int i = 0 ; i < args . l ength ; i++) {
19 r u l e s e t [ i ] = args [ i ] . g e t In t ( ) ;

20 }
21

22 // re− i n i t i a l i z e o r i g i n a l c e l l s t a t e f o r convenience

23 /∗ code omit ted ∗/
24 }
25

26 /∗∗
27 ∗ e vo l v e next genera t ion o f c e l l s
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28 ∗/
29 private void generate ( ) {
30 int [ ] nextgen = new int [ columns ] ;

31

32 for ( int i = 1 ; i < columns−1; i++) {
33 int l e f t N e i g h b o r = c e l l s [ i −1] ;

34 int t h i s C e l l = c e l l s [ i ] ;

35 int r ightNe ighbor = c e l l s [ i +1] ;

36 nextgen [ i ] = applyRules ( l e f tNe ighbor , t h i s C e l l , r i ghtNe ighbor ) ;

37 }
38

39 c e l l s = ( int [ ] ) nextgen . c l one ( ) ;

40 }
41

42 private int applyRules ( int l e f t , int c e l l , int r i g h t ) {
43 i f ( l e f t == 1 && c e l l == 1 && r i g h t == 1) return r u l e s e t [ 0 ] ;

44 i f ( l e f t == 1 && c e l l == 1 && r i g h t == 0) return r u l e s e t [ 1 ] ;

45 i f ( l e f t == 1 && c e l l == 0 && r i g h t == 1) return r u l e s e t [ 2 ] ;

46 i f ( l e f t == 1 && c e l l == 0 && r i g h t == 0) return r u l e s e t [ 3 ] ;

47 i f ( l e f t == 0 && c e l l == 1 && r i g h t == 1) return r u l e s e t [ 4 ] ;

48 i f ( l e f t == 0 && c e l l == 1 && r i g h t == 0) return r u l e s e t [ 5 ] ;

49 i f ( l e f t == 0 && c e l l == 0 && r i g h t == 1) return r u l e s e t [ 6 ] ;

50 i f ( l e f t == 0 && c e l l == 0 && r i g h t == 0) return r u l e s e t [ 7 ] ;

51 return 0 ;

52 }
53

54 public void bang ( ) {
55 o u t l e t (0 , c e l l s ) ;

56 generate ( ) ;

57 }
58 }

Listing 5.2: Java code of the CA 1D class (adapted from [Pro04])

5.4.6. Lead

For the lead voice, a simple genetic algorithm was implemented, so as to explore the

potential of an evolutionary approach to produce meaningful melodic patterns. To

achieve this, the population is initialized as 1000 (an arbitrarily chosen amount) four-

note sequences (see listing B.3 in the appendix), each including the respective note

pitches, velocities and relative durations. These parameters are filled with random
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values; however, the initialization of pitch values takes into account the specified reg-

ister as well as the melodic range in octaves (again according to the current valence

value). Thus, the initial search domain of the algorithm is limited to a predefined

set of note pitches.

The crucial point in the design of the lead voice was the determination of a suitable

fitness evaluation function, which is necessary for the selection of the fittest enti-

ties for the mating pool. It showed that such a function would have to take into

consideration rhythmic, tonality, harmony, articulation and accentuation factors. In

a crude estimation, those factors were multiplied with each other to obtain a mea-

surement for fitness according to the user-specified values. The respective values of

those parameters were determined as follows:

• Rhythm Factor

To obtain a measurement for rhythmic complexity, the pauses (resembled by a

note value of -1) in the pattern are counted. Furthermore, the pauses’ relative

positions are also considered to be relevant concerning rhythmic structure, so

the on beat pauses are counted to be included in the calculation afterwards,

too. Equation 5.1 displays the computation of the rhythm factor fRhythm.

fRhythm = 1− (fRhythm,User − fRhythm,Pattern)2

fRhythm,Pattern =
nP,P · (nN,P − nP,P )

n2
N,P

+
nP,O
nN,P

(5.1)

To reflect the distance of the user-defined rhythmic complexity value (which is

a decimal number between 0 and 1) to the pattern’s value in the computation,

the difference of the two values is taken and subtracted from 1, so that high

values of fRhythm resemble high values of rhythmic complexity. The pattern’s

complexity is composed of the addition of two quotients: one involving the

total number of pauses nP,P and comparing it to the note amount nN,P in

such a way, that a pause frequency of half the pattern’s length denotes a

local maximum. The second quotient includes the onbeat pauses nP,O which

are divided by nN,P and added to the pattern’s overall rhythmic complexity

factor.

• Tonality Factor

The tonality factor provides a weighting factor describing how many notes of

the pattern are in the desired range (see equation 5.2). Whether a note is in
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the required range is determined by the user-defined melodic range, keynote

and register.

fTonality =
nN,Range
nN,P

(5.2)

• Harmony Factor

The harmonic aspect is covered by the amount of notes that belong to the

given scale nN,Scale, as well as the harmonic ratio determined by the current

valence value (between 0.2 and 0.8), analogously to the rhythm factor.

fHarmony = 1− (fHarmony,User − fHarmony,Pattern)2

fHarmony,Pattern =
nN,Scale
nN,P

(5.3)

• Articulation Factor

As the note lengths are stored in a relative way, their average value fArticulation,Pattern,

as well as the user-defined value fArticulation,User are used for the calculation.

fArticulation = 1− (fArticulation,User − fArticulation,Pattern)2 (5.4)

• Accentuation Factor

This factor includes the specified peak MIDI velocity vpeak as well as the aver-

age value v̄Pattern of the velocities contained in the pattern and their standard

deviation σv,Pattern. Those values are compared with the user-defined mean

v̄User and standard deviation σv,User as follows:

fAccentuation = fAccentuation,Mean · fAccentuation,Stddev

fAccentuation,Mean = 1−
(
v̄Pattern − vpeak · v̄User

127

)2

fAccentuation,Stddev = 1−
(σv,Pattern

127
− σv,User

)2

(5.5)

It seems evident that the fitness assessment method employed here is only a prim-

itive approximation of the actual value of the musical content. However, it also

shows the difficulty in designing a suitable technique for evaluating the fitness or

appropriateness of musical structures. The complications encountered here hint at

the possibility of employing other fitness classifiers which are relying on artificial

intelligence methods (e.g. ANN).
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After the fitness evaluation phase, the fitter half of the population is selected for

reproduction, by exchanging halves of their genotype notes, velocities and dura-

tions. The offspring is inserted into the population after a mutation phase which

involves the altering of one random bit of the note pitches and velocities of every

tenth pattern. In a first step, 20 generations of such a population are evolved, and

afterwards the four fittest sequences are selected for output.

All in all, the genetic algorithm developed here turned out to be a valuable ex-

periment, even though it contains a vast amount of options and parameters that

have to be taken into consideration. For example, the percentage of mutated enti-

ties had a significant impact on the outcome, as well as the amount of generations,

the total size of the population and the proportions of the entity sets selected for

reproduction. It seems apparent that such algorithms are a valuable approach for

the generative composition of music, especially if one reviews related research on

this topic, as has already been pointed out.

5.5. Evaluation

5.5.1. Subjective Critique

Musical Content

The resulting music shows defined rhythmic and melodic structures, while at the

same time exhibiting enough diversity so as not to be considered monotonous or

repetitive3. While highly and lowly aroused moods seem to be sufficiently discernible,

the weighting of the valence axis seemingly has to take more features into account

than the ones proposed in this thesis. Especially timbre, or instrumentation, as

well as the mix and arrangement of the instruments seem to considerably affect the

differentiation between negative and positive mood representations. In a standalone

music generation library embedded e.g. in gaming or other interactive environments,

this constraint should be addressed rigorously.

Another question that arises here is whether certain musical styles or genres re-

quire the usage of a certain selection of instrumental voices or timbres, and vice

versa. Since this prototype was constructed without considering matters of musical

3In fact, the author experienced no listening fatigue even after a period of 20 minutes.
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genre, or stylistic concerns, it is impossible to predict the effect that the resulting

music will have on how it is perceived when played back with different sets of in-

struments. In other words, whether the music produced by the prototype fits the

melodic capabilities of the instruments that are used for playback, or the stylistic

implications associated with them, is not part of the prototype’s architecture.

A special stylistic issue that has to be dealt with is the necessity of a lead voice.

It can be argued that in many possible environments, such as image videos or in-

teractive product presentations, a lead voice incorporating the melodic conduct of a

piece could be considered disturbing, or at least distracting. In other, more immer-

sive environments, such as computer games or auditory user interfaces, a lead voice

cannot be done away with, since it embodies the recognizability and uniqueness of

a product, or serves the guiding functions the product is intended to exhibit.

Implemented Algorithms

Of the implemented algorithms, especially the sonified Hénon map proved to be of

great value concerning the composition of pitches or intervals (see also [Asc08], pp.

81f). The self similar, yet continuously slightly varying note or chord progressions

produced by it seem to be highly suitable for background components that do not

require distinct musical gestures, such as bassline or pad.

In the context of this prototype, cellular automata were used to produce rhythmic

structures to be fed into a drumkit. As suggested in section 4.2.4, the fractal-like

cell evolution exhibited by some specific rulesets is suitable to produce interesting

patterns that display self-similarity and variance at the same time. However, the

spectrum of patterns that CA are able to produce seems to be limited. For exam-

ple, they are not able to produce short gestures, such as drum or cymbal fills, in a

satisfactory way. Furthermore, most automata create patterns that have an irreg-

ular time base, e.g. 6 or 14 pulses, so that in order to obtain different meters it is

inevitable to interfere with the algorithm’s flow, e.g. by restarting it continuously.

For the variation of note articulation and accentuation, a simple Gaussian probabil-

ity distribution process turned out to be useful. By simply shaping the expectation

value and the standard deviation of a Gaussian distributed random number gener-

ator, variance of both loudness and note duration can be influenced in a natural
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sounding and sufficiently predictable way.

Although the genetic algorithm implemented in the prototype is only a simplification

of more sophisticated and powerful ones, it clearly shows that using alife approaches,

the borders of computer-based creativity can be further extended. Using ANNs as

fitness evaluators could prove to be a valuable option, as well as initializing the GA’s

population not with random notes, but with precomposed patterns. With suitably

trained agents (e.g. neural networks) as fitness classifiers, it even appears to be

possible to generate high-level structures using genetic algorithms.

5.5.2. Expert Assessment

By and large, the performed expert interviews confirmed the subjective impression

that the valence axis was underrepresented in the prototype as compared to the

arousal axis. The intended representations of tension and calmness were identified

with a larger degree of certainty in contrast to those of happiness and sadness.

There also seems to be some consensus that stylistic differences and associations

contribute to the representation of moods, and that an interrelation between a cer-

tain genre and the musical elements used therein exists. In this context, it has also

been mentioned that genre-specific representation of affective states, or rather their

recognition, depends on the audience’s listening experience, or cultural differences

and encodings to a large extent.

Even more agreement can be found regarding the relation between timbre or instru-

mentation and emotional representation. Timbre, and micro-temporal fluctuations

seem to be understood and interpreted by the listener in an intuitive manner, and

also seem to be closely interconnected with certain genres. It was regarded as ev-

ident that timbres of natural, mechanical instruments (as compared to electronic

ones) entail a longer tradition and feature certain rhythmic, melodic and harmonic

stereotypes that lead to certain interpretations by the audience. Indeed, it would be

a valuable addition to this experiment to exchange musical timbres and analyse the

changes on mood representation.

One expert reported the frequent occurrence of dissonant intervals, which also hints

at the question whether the lead voice could be too distracting in a media context.
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At any rate, it signifies that melodies should perhaps be precomposed or at least

generated by a more sophisticated random generator.

Generally, cost and time factors were mentioned as a primary advantage of genera-

tive approaches toward music composition by all experts. The field of algorithmic

composition was seen as a promising, yet not enough explored area of music creation,

which could prove to be valuable in interactive media contexts. On the other hand,

all experts reported the musical arbitrariness of outcomes and several restrictions

concerning the employed instruments and stylistics, as well as issues regarding the

musical training of the audience. It seems as though these restrictions should be

addressed firmly when refining the prototype.
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6. Conclusion

6.1. Discussion of Results

The foremost ambition of this thesis was to discuss the discrepancy between con-

temporary practice regarding the use of music in media products, and the functions

and impacts that this type of music is intended to embody. While tools for the

dynamic and automatic generation of music in real time exist and are experimented

on in many research and artist communities, numerous media products, especially

those equipped with a small budget, still rely on repetitive patterns composed of

stereotype music loops.

However, recently there has been a shift in public attention towards generative or

reactive music applications, which expresses the necessity for research in this field

so as to provide the fundament for the development of intuitive, mentally satisfying

music-generating tools.

After all, algorithmic approaches display many features that seemingly make them

an excellent choice to create an interactive tool for automatic and adaptive mu-

sic production. Such an appliance could address the conflict between high quality

standards and low production costs that many media producers are facing. At the

moment, music tracks are often composed of loops taken from royalty-free music li-

braries; a fact that many media products are suffering from, as it affects both quality

and recognizability. Another drawback of off-the-shelf music loops lies in the inabil-

ity to apply dramaturgic concepts to them or create high-level structures from them.

The methodology used in this thesis was mainly based on literature research on

the topics of media music composition, relevant perceptional principles as well as

the representation of moods by different musical parameters. Furthermore, several

common algorithms which are used for automatic music generation were investigated

and evaluated as to their appropriateness for the design of a prototypical application.
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Subsequently, the prototype was developed in the Max/MSP graphical programming

environment, incorporating iterative as well as artificial life algorithms. The purpose

of this implementation was to show that it is possible to devise an application which

is usable by users with little or no musical background. In addition, a graphical

user interface enabling the intuitive control of mood representation was created. Fi-

nally, using expert interviews and a subjective critique by the author, the produced

content’s aesthetic value as well as the representation of the specified mood charac-

teristic was evaluated.

The results found during the research conducted in this thesis can be summarized

as follows. In the second chapter, principles of the perception of media music, as

well as its functions and impacts were discussed. Furthermore, design patterns were

investigated along with potential applications and taxonomies that can be used for

the categorization of media music. Media music seems to incorporate several func-

tions, the most relevant ones being emotive, informative and guiding functions. It

showed that both design patterns and perceptional concepts are closely linked to

the fact that sound in general is a time-based medium, allowing for a practicable

classification in correlation with the time scale.

The third chapter included an examination of mood representation of music, and

the identification of a set of parameters that can be utilized to generate emotionally

biased music. Current studies on musical mood classification were cited, and con-

cluded by the introduction of Russell’s circumplex model of affects. This emotional

model seems to be apt for a sufficiently minute differentiation of affective states, as

well as for a computational representation, as it is made up of two independent vari-

ables - the valence and arousal axes. Using state-of-the-art research on the modeling

of mood music, a set of eleven parameters contributing to the emotional representa-

tion of a piece of music was identified (consisting of: mode, timbre, tempo, meter,

rhythm, accentuation, accentuation, articulation, volume, register, melodic range,

and harmony). In another step, it was attempted to map these parameters on the

two independent axes mentioned above, so as to provide the basis for a prototype

for the automatic production of mood music. A mapping of mode, rhythm, melodic

range and harmony on the valence axis, as well as tempo, articulation, timbre, vol-

ume and accentuation on the arousal axis seemed feasible.
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In addition, possible generative algorithms were studied as well as their possibili-

ties concerning the mapping of the mentioned musical parameters. It showed that

the most common generative approaches are derived from different areas, such as

probabilistic or iterative processes, artificial intelligence and artificial life. There are

indeterministic techniques, such as stochastic ones, as well as strictly deterministic,

but nonetheless unpredictable ones, such as iterative processes, followed by artificial

intelligence and evolutionary methods. Due to the diversity of those approches, the

mapping of input parameters has to be addressed in different ways: probabilistic and

chaotic outputs have to be shaped or filtered, fractal structures and cellular automata

depend on their initial parameters, while artificial networks have to be trained to

produce the desired output, and genetic algorithms need to be approached with a

suitable definition of musical fitness.

In the next step, a software prototype was constructed, based on the findings from

the preceding chapters. The objective was to design a user interface derived from

the circumplex model of affects, that would facilitate the use of a music-generating

tool for people with little or no musical knowledge. This prototype was developed in

Max/MSP and enables the seamless, real-time control of the musical output’s mood

representation. Implemented algorithms include stochastic probability distributions

as well as chaotic systems, cellular automata and genetic algorithms.

Finally, the produced musical content was evaluated concerning the correct map-

ping of the specified input parameters, as well as its aesthetical value. Moreover,

it was also analyzed whether the music composed by the prototype indeed offers

a representation of the intended moods. In general, the produced music showed

perceivable rhythmic and melodic patterns, while possessing a sufficient degree of

variation. It can be remarked in this context, that the goal of constructing a com-

positional automaton that evolves self-similar, yet not repetitive structures has been

sufficiently reached.

Regarding the represenation of mood, the results show a tendency toward a better

representation of the arousal domain as compared to the valence domain. Despite

the common preconception that major and minor scales represent positive and neg-

ative affects, apparently timbre as well as the mix or arrangement of instruments

have a higher degree of influence than is often suspected. Concludingly it can be
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noted that although the research conducted in this thesis indicates several tendencies

toward mood representation in automatic music composition systems, music is still

a time-based art whose impact is dependent on a multitude of parameters at the

same time. Therefore it seems necessary to identify fields of future research in this

context.

6.2. Future Research

Some classes of functions of media music were identified in this thesis; however, an-

other wide area of possible future research lies in the semantic aspects of such music.

Depending on the type of usage (commercial, informational, educational etc.), music

is able to transport or encode meaning. It would be a worthwile task to study these

features and identify parameters in the musical content that are responsible for the

inclusion of semantic attributes.

Furthermore, the taxonomy of media-based music developed in this thesis can only be

viewed as a starting point for a minute examination of this area. Such a fundamental

taxonomy would present an essential component to facilitate access to the field of

media music, and a source for many further studies regarding functions and impacts.

An important result of the conducted research is the fact that positive and neg-

ative affects seemingly need further studies concerning their musical representation.

A valuable approach could be the examination of timbral aspects, as well as in-

strumentation or arranging techniques. Also, high-level musical structures can be

suspected to contribute to this representation of valence.

As it was shown that genetic algorithms, or artificial life approaches in general,

can be regarded as a promising branch of algorithmic composition, special effort

should be laid on the conception of more appropriate fitness criteria for mood mu-

sic. In general, low-level characteristics of music, such as were employed in this thesis

should be taken into consideration as well as high-level structures. As dramaturgy

presents a central factor in the composition of music, it would be of high value if

these aspects could be integrated in such an approach.
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Finally, the expert assessment that was carried out during the evaluation of the

prototype should be augmented by extensive listener surveys, so as to gain better

insight into the correlations of the mentioned low-level musical parameters with

mood representation.
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Glossary

Auditory Icon A sonic element of an auditory user interface, which resembles a

realistic everyday sound (sometimes enhanced or stylized) and thus needs no

further learning or interpretation by the user (see [Bro07] p. 88). 5

Earcon A sonic element of an auditory user interface, which is used to transport

information – similarly to visual icons – in an abstract way (e.g. by using a

musical interval), and thus needs to be learned and interpreted by the user

(see [Bro07] p. 88). 5

Formant Denotes a frequency range that emerges in the frequency spectrum of an

acoustic signal according to the characteristics of the source’s resonating body

(see [Raf02], p. 52). 24

Granular Synthesis A sound synthesis technique comprising the division of an origi-

nal sample into grains – segments of only a few milliseconds – and their resyn-

thesis by reassembling them in an arbitrary sequence (see [Raf02], p. 239).

25

Leitmotif A musical motif that is attached to a certain character or mood. 19

Minor Modes Diatonic scales that exhibit a minor third interval. Commonly di-

vided into

• natural minor (half step between second and third, and fifth and sixth

degree)

• harmonic minor (seventh degree raised a semitone)

• melodic minor (sixth and seventh degrees raised a semitone)

. 40
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Glossary

Physical Modeling A sound synthesis technique which uses computer simulations

of oscillating bodies (e.g. strings, membranes etc.) in order to generate certain

timbres and temporal structures of a sound (see [Raf02], p. 240). 25

Synchresis Chion defines synchresis the following way:

“The forging of an immediate and necessary relationship between

something one sees and something one hears at the same time (from

synchronism and synthesis). The psychological phenomenon of syn-

chresis is what makes dubbing and much other postproduction sound

mixing possible.”

([Chi94], p. 224) . 9
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Acronyms

Alife Artificial Life. 71

ANN Artificial Neural Network. 66

CA Cellular Automata. 72

CTRNN Continuous-Time Recurrent Neural Networks. 81

GA Genetic Algorithms. 75

MIDI Musical Instrument Digital Interface. 48

MLP Multi Layer Perceptron. 68
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ter Musik als Repräsentation von vorgestellten Handlungen - Aus-

drucksmodelle als Erklärung für die Wirkungen von Musik, pages 20–31.

Verlag Reinhard Fischer, München, 2007.

[Bur98] Heinz-Wilfried Burow. Musik, Medien, Technik: ein Handbuch. Laaber

Verlag, 1998.

[BW05] Jan Berg and Johnny Wingstedt. Relations between selected musical

parameters and expressed emotions - extending the potential of com-

puter entertainment. In S. Zhou, Z. Ying, and L.S. Ping, editors, ACM

SIGCHI International Conference on Advances in Computer Entertain-

ment Technology ACE, pages 164–171, Valencia, Spain, 15-17 June 2005.

New York: ACM.

[BW06] Jan Berg and Johnny Wingstedt. Perceived properties of parameterised

music for interactive applications. Journal of Systemics, Cybernetics

and Informatics, 4(2):65–71, 2006.

[BW07] Oliver Bown and Geraint A. Wiggins. On the meaning of life (in arti-

ficial life approaches to music). In Computational Creativity Workshop.

Goldsmiths, University of London, 2007.

[CGH06] Stuart Cunningham, Vic Grout, and Richard Hebblewhite. Computer

game audio: The unappreciated scholar of the half-life generation. In

Proceedings of the Audio Mostly Conference - a Conference on Sound

in Games, pages 9–14, Pite̊a, October 2006. Interactive Institute, Sonic

Studio Pite̊a.

106



Bibliography

[Chi94] Michel Chion. Audio-Vision - Sound on Screen. Columbia University

Press, 1994.

[ENF06] Mirjam Eladhari, Rik Nieuwdorp, and Mikael Fridenfalk. The sound-

track of your mind: mind music - adaptive audio for game characters. In

ACE ’06: Proceedings of the 2006 ACM SIGCHI international confer-

ence on Advances in computer entertainment technology, page 54, New

York, NY, USA, 2006. ACM.

[Eno96] Brian Eno. Generative music. URL,

http://www.inmotionmagazine.com/eno1.html, July 1996. accessed

July 30, 2008.

[Ess91] Karlheinz Essl. Computer aided composition. URL,

http://www.essl.at/bibliogr/cac.html, 1991. accessed October 22,

2008.
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http://mathworld.wolfram.com/HenonMap.html, 2008. accessed

January 1, 2009.

[Whi04] David Whitehead. Media taxonomy. URL,

http://csmt.uchicago.edu/taxonomy/taxonomywhitehead.htm, 2004.

accessed January 19, 2009.

[Win98] Todd Winkler. Composing Interactive Music - Techniques and Ideas

Using Max. MIT Press, 1998.

[Win04] Johnny Wingstedt. Narrative functions of film music in a relational

perspective. In Proceedings of ISME - Sound Worlds to Discover, Santa

Cruz, Teneriffe, Spain, 2004. International Society for Music Education.

110



A. CD-ROM Contents

• Rubisch - Generative Music for Media Applications.pdf (this thesis in electronic

form)

Prototype

• CA 1D.class

• CA 1D.java

• GeMMA prototype v0.5.maxpat

• HenonMap.class

• HenonMap.java

• major note classifier.maxpat

• minor note classifier.maxpat

• Sequence.class

• SimpleGA.class

• SimpleGA.java

Questionnaire

• qu1.mp3

• qu2.mp3

• qu3.mp3

• qu4.mp3

• Questionnaire Hannes Raffaseder.doc

111



A - CD-ROM Contents

• Questionnaire Martin Parker.rtf

• Questionnaire Matthias Husinsky.doc

• Questionnaire Michael Jaksche.doc

References

• Literature

– Aschauer - Algorithmic Composition.pdf [Asc08]

– AudioMostly 2006.pdf [CGH06] [MK06] [Jør06]

– AudioMostly 2007.pdf [BH07] [HDK07] [Far07]

– AudioMostly 2008.pdf [BK08]

– Beveridge - Music emotion classification by audio signal analysis.pdf [KCBM08]

– Birchfield - Generative Model for the creation of musical emotion.pdf [Bir03]

– Bown Lexer - CTRNN.pdf [BL06]

– Bown Wiggins - On the Meaning of Life.pdf [BW07]

– Eladhari - The Soundtrack of your Mind.pdf [ENF06]

– Essl - Strukturgeneratoren.pdf [Ess96]

– Hu - Creating a Simplified Music Mood Classification Ground-Truth Set.pdf

[HBD07]

– Miranda - Sounds of Artificial Life.pdf [Mir02]

– Pachet - A Taxonomy of Musical Genre.pdf [PC00]

– Russell - circumplex model of affects.pdf [RPP05]

– Skowronek - A Demonstrator for Automatic Music Mood Estimation.pdf

[SMvdP07]

– Tanaka - Interaction,Experience and the Future of Music.pdf [Tan06]

– Wingstedt - Narrative functions of film music.pdf [Win04]

– Wingstedt - Perceived Properties of Parameterized Music.pdf [BW06]

– Wingstedt - Relations between Selected Musical Parameters.pdf [BW05]

• Websites

112



A - CD-ROM Contents

– Bea96.html [Bea96]

– Bei04.html [Bei04]

– Bla01.html [Bla01]

– Bra08.html [Bra08]

– Eno96.html [Eno96]

– Ess91.html [Ess91]

– Hou04.html [Hou04]

– Mar04.html [Mar04]

– Mur05a.html [Mur05a]

– Mur05b.html [Mur05b]

– Pro04.html [Pro04]

– Wei08a.html [Wei08a]

– Wei08b.html [Wei08b]

– Wei08c.html [Wei08c]

– Whi04.html [Whi04]

113



B. Code

1 import com . cyc l i ng74 . max . ∗ ;

2

3 public class HenonMap extends MaxObject {
4

5 private f loat a ;

6 private f loat b ;

7 private f loat x ;

8 private f loat y ;

9

10

11 public HenonMap(Atom [ ] args ) {
12

13

14 d e c l a r e A t t r i b u t e ( ”a” ) ;

15 d e c l a r e A t t r i b u t e ( ”b” ) ;

16 d e c l a r e A t t r i b u t e ( ”x” ) ;

17 d e c l a r e A t t r i b u t e ( ”y” ) ;

18

19 declareTypedIO ( ” b f f f f ” , ” f f ” ) ;

20

21 s e t I n l e t A s s i s t (new St r ing [ ] {
22 ”bang to output next x and y va lue s ” ,

23 ” f l o a t to s e t va lue o f a” ,

24 ” f l o a t to s e t va lue o f b” ,

25 ” f l o a t to s e t va lue o f x” ,

26 ” f l o a t to s e t va lue o f y” }) ;

27

28 s e t O u t l e t A s s i s t (new St r ing [ ] {
29 ”x value ( f l o a t ) ” ,

30 ”y value ( f l o a t ) ” ,

31 ” i n f o o u t l e t ” }) ;

32 }
33

34 /∗∗
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35 ∗ produce next i t e r a t i o n o f Henon map

36 ∗/
37 private void generate ( ) {
38

39 // app ly henon formulas

40 f loat lastX = x ;

41 f loat lastY = y ;

42

43 x = lastY + 1 − a ∗ ( f loat ) Math . pow( lastX , 2) ;

44 y = b ∗ lastX ;

45 }
46

47 public void i n l e t ( f loat f ) {
48 int i n l e tNo = g e t I n l e t ( ) ;

49

50 switch ( in l e tNo ) {
51 case 1 : a = f ; break ;

52 case 2 : b = f ; break ;

53 case 3 : x = f ; break ;

54 case 4 : y = f ; break ;

55 }
56 }
57

58 public void bang ( ) {
59 generate ( ) ;

60 o u t l e t (0 , x ) ;

61 o u t l e t (1 , y ) ;

62 }
63 }

Listing B.1: Full Java code of the HenonMap class
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1 import com . cyc l i ng74 . max . ∗ ;

2 import java . u t i l . Random ;

3

4 public class CA 1D extends MaxObject {
5

6 private int [ ] c e l l s ;

7 private int [ ] r u l e s e t ;

8 private int columns ;

9

10 Random r = new Random( ) ;

11

12 public CA 1D(Atom [ ] args ) {
13 d e c l a r e A t t r i b u t e ( ” c e l l s ” ) ;

14 d e c l a r e A t t r i b u t e ( ” r u l e s e t ” ) ;

15 d e c l a r e A t t r i b u t e ( ”columns” ) ;

16

17 columns = 10 ;

18

19 // f i r s t and l a s t c e l l s are l e f t b lank and w i l l not be d e a l t wi th

by r u l e s e t

20

21 // i n i t i a l i z e d e f a u l t s t a r t i n g c e l l order : 0 1 0 0 0 1/0 0 0 0 0

22 c e l l s = new int [ columns ] ;

23 c e l l s [ 0 ] = 0 ;

24 c e l l s [ 1 ] = 1 ;

25 c e l l s [ 2 ] = 0 ;

26 c e l l s [ 3 ] = 0 ;

27 c e l l s [ 4 ] = 0 ;

28 c e l l s [ 5 ] = r . next Int (2 ) ;

29 c e l l s [ 6 ] = 0 ;

30 c e l l s [ 7 ] = 0 ;

31 c e l l s [ 8 ] = 0 ;

32 c e l l s [ 9 ] = 0 ;

33

34 // i n i t i a l i z e d e f a u l t r u l e s e t : 90

35 r u l e s e t = new int [ 8 ] ;

36 r u l e s e t [ 0 ] = 0 ;

37 r u l e s e t [ 1 ] = 1 ;

38 r u l e s e t [ 2 ] = 0 ;

39 r u l e s e t [ 3 ] = 1 ;

40 r u l e s e t [ 4 ] = 1 ;

41 r u l e s e t [ 5 ] = 0 ;

42 r u l e s e t [ 6 ] = 1 ;
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43 r u l e s e t [ 7 ] = 0 ;

44 }
45

46 public void l i s t (Atom [ ] args ) {
47 // f i l l r u l e s e t wi th l i s t arguments

48 for ( int i = 0 ; i < args . l ength ; i++) {
49 r u l e s e t [ i ] = args [ i ] . g e t In t ( ) ;

50 }
51

52 // re− i n i t i a l i z e o r i g i n a l c e l l s t a t e f o r convenience

53 c e l l s [ 0 ] = 0 ;

54 c e l l s [ 1 ] = r . next Int (2 ) ;

55 c e l l s [ 2 ] = 0 ;

56 c e l l s [ 3 ] = 0 ;

57 c e l l s [ 4 ] = 0 ;

58 c e l l s [ 5 ] = 1 ;

59 c e l l s [ 6 ] = 0 ;

60 c e l l s [ 7 ] = 0 ;

61 c e l l s [ 8 ] = 0 ;

62 c e l l s [ 9 ] = 0 ;

63 }
64

65 private void generate ( ) {
66 int [ ] nextgen = new int [ columns ] ;

67

68 for ( int i = 1 ; i < columns−1; i++) {
69 int l e f t N e i g h b o r = c e l l s [ i −1] ;

70 int t h i s C e l l = c e l l s [ i ] ;

71 int r ightNe ighbor = c e l l s [ i +1] ;

72 nextgen [ i ] = applyRules ( l e f tNe ighbor , t h i s C e l l , r i ghtNe ighbor ) ;

73 }
74

75 c e l l s = ( int [ ] ) nextgen . c l one ( ) ;

76 }
77

78 private int applyRules ( int l e f t , int c e l l , int r i g h t ) {
79 i f ( l e f t == 1 && c e l l == 1 && r i g h t == 1) return r u l e s e t [ 0 ] ;

80 i f ( l e f t == 1 && c e l l == 1 && r i g h t == 0) return r u l e s e t [ 1 ] ;

81 i f ( l e f t == 1 && c e l l == 0 && r i g h t == 1) return r u l e s e t [ 2 ] ;

82 i f ( l e f t == 1 && c e l l == 0 && r i g h t == 0) return r u l e s e t [ 3 ] ;

83 i f ( l e f t == 0 && c e l l == 1 && r i g h t == 1) return r u l e s e t [ 4 ] ;

84 i f ( l e f t == 0 && c e l l == 1 && r i g h t == 0) return r u l e s e t [ 5 ] ;

85 i f ( l e f t == 0 && c e l l == 0 && r i g h t == 1) return r u l e s e t [ 6 ] ;
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86 i f ( l e f t == 0 && c e l l == 0 && r i g h t == 0) return r u l e s e t [ 7 ] ;

87 return 0 ;

88 }
89

90 public void bang ( ) {
91 o u t l e t (0 , c e l l s ) ;

92 generate ( ) ;

93 }
94 }

Listing B.2: Full Java code of the CA 1D class (adapted from [Pro04])

1 class Sequence implements Comparable {
2

3 private byte [ ] notes ;

4 private byte [ ] v e l o c i t i e s ;

5 private f loat [ ] durat i ons ;

6 private f loat f i t n e s s ;

7

8 private int l ength = 4 ;

9

10 private Random r = new Random( ) ;

11

12 public Sequence ( ) {
13

14 }
15

16 public Sequence ( int keynote , int melodicRange , int r e g i s t e r , int

meter ) {
17

18 this . l ength = meter ;

19

20 notes = new byte [ l ength ] ;

21 v e l o c i t i e s = new byte [ l ength ] ;

22 durat ions = new float [ l ength ] ;

23

24 for ( int i = 0 ; i < l ength ; i++) {
25 int note = r . next Int (13) ;

26 note −= 1 ;

27

28 i f ( note >= 0) {
29
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30 f loat rangeFactor = ( f loat ) r . next Int ( melodicRange ) −
melodicRange /2 .0 f ;

31

32 note += r e g i s t e r ∗ 12 ;

33

34 note += rangeFactor ∗ 12 ;

35

36 note += keynote ;

37 }
38

39 notes [ i ] = (byte ) note ;

40

41 int v e l o c i t y = r . next Int (128) ;

42

43 v e l o c i t i e s [ i ] = (byte ) v e l o c i t y ;

44

45 f loat durat ion = r . nextFloat ( ) ;

46

47 durat ions [ i ] = durat ion ;

48 }
49 }
50

51 public int compareTo ( Object o ) throws Nul lPo interExcept ion {
52 i f ( o == null ) throw new Nul lPo interExcept ion ( ) ;

53

54 Sequence s = ( Sequence ) o ;

55

56 i f ( this . f i t n e s s < s . g e t F i t n e s s ( ) ) return −1;

57

58 i f ( this . f i t n e s s == s . g e t F i t n e s s ( ) ) return 0 ;

59

60 i f ( this . f i t n e s s > s . g e t F i t n e s s ( ) ) return 1 ;

61

62 return 0 ;

63 }
64

65 public f loat g e t F i t n e s s ( ) {
66 return f i t n e s s ;

67 }
68

69 public byte [ ] getNotes ( ) {
70 return notes ;

71 }
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72

73 public byte [ ] g e t V e l o c i t i e s ( ) {
74 return v e l o c i t i e s ;

75 }
76

77 public f loat [ ] getDurat ions ( ) {
78 return durat ions ;

79 }
80

81 public void se tNotes (byte [ ] notes ) {
82 this . notes = notes ;

83 }
84

85 public void s e t V e l o c i t i e s (byte [ ] v e l o c i t i e s ) {
86 this . v e l o c i t i e s = v e l o c i t i e s ;

87 }
88

89 public void s e tDurat ions ( f loat [ ] durat i ons ) {
90 this . durat ions = durat ions ;

91 }
92

93 public void c a l c u l a t e F i t n e s s ( f loat rhythmicComplexity , f loat

art icu lat ionMean , f loat accentuationMean ,

94 f loat accentuat ionStddev , int mode , int keynote , int melodicRange ,

int r e g i s t e r , f loat harmony , int peakVeloc i ty ) {
95

96 int pauses = 0 ;

97 int pausesOnbeat = 0 ;

98 int notesInRange = 0 ;

99

100 int not e s InSca l e = 0 ;

101

102 f loat sumLengths = 0 .0 f ;

103 f loat averageLength = 0 .0 f ;

104

105 int sumVe loc i t i e s = 0 ;

106 int averageVe loc i ty = 0 ;

107

108 for ( int i = 0 ; i < l ength ; i++) {
109 // count pauses

110 i f ( notes [ i ] == −1) {
111 pauses++;

112 i f ( i \% 2 == 0) {

120



B - Code

113 pausesOnbeat++;

114 }
115 }
116

117 // e va l ua t e i f notes are in melodic range

118 i f ( ( notes [ i ] <= keynote + 12∗ r e g i s t e r + melodicRange ∗12/2

119 && notes [ i ] >= keynote + 12∗ r e g i s t e r − melodicRange ∗12/2)

120 | | notes [ i ] == −1) {
121 notesInRange++;

122 }
123

124 // e va l ua t e i f notes are in g iven s c a l e

125 i f (mode == 0) { // major

126 int rootNote = ( notes [ i ] − ( keynote − 60) ) \% 12 ;

127

128 switch ( rootNote ) {
129 case 0 : no t e s InSca l e++; break ;

130 case 2 : no t e s InSca l e++; break ;

131 case 4 : no t e s InSca l e++; break ;

132 case 5 : no t e s InSca l e++; break ;

133 case 7 : no t e s InSca l e++; break ;

134 case 9 : no t e s InSca l e++; break ;

135 case 11 : no t e s InSca l e++; break ;

136 }
137 }
138

139 i f (mode == 1) { // minor

140 int rootNote = ( notes [ i ] − ( keynote − 60) ) \% 12 ;

141

142 switch ( rootNote ) {
143 case 0 : no t e s InSca l e++; break ;

144 case 2 : no t e s InSca l e++; break ;

145 case 3 : no t e s InSca l e++; break ;

146 case 5 : no t e s InSca l e++; break ;

147 case 7 : no t e s InSca l e++; break ;

148 case 8 : no t e s InSca l e++; break ;

149 case 10 : no t e s InSca l e++; break ;

150 }
151

152 }
153

154 // sum note l e n g t h

155 sumLengths += durat ions [ i ] ;

121



B - Code

156

157 // sum note v e l o c i t i e s

158 sumVe loc i t i e s += v e l o c i t i e s [ i ] ;

159 }
160

161 averageVe loc i ty = sumVe loc i t i e s / l ength ;

162

163 f loat sumSquareVe loc i tyDi f f e r ences = 0 .0 f ;

164 for ( int i = 0 ; i < l ength ; i++) {
165 sumSquareVe loc i tyDi f f e r ences += ( f loat ) Math . pow ( ( v e l o c i t i e s [ i ] −

averageVe loc i ty ) , 2) ;

166 }
167 f loat v e l o c i t i e s S t d d e v = ( f loat ) Math . s q r t (

sumSquareVe loc i tyDi f f e r ences /( length −1) ) ;

168

169 // c a l c u l a t e rhythm f a c t o r

170 f loat rhythmFactor = ( f loat ) ( pauses ∗ ( this . l ength − pauses ) ) /(

f loat ) Math . pow( this . l ength , 2) ;

171

172 // pause p o s i t i o n s : onbeat pauses count more

173 rhythmFactor += pausesOnbeat/ this . l ength ;

174

175 rhythmFactor = 1 − ( f loat ) Math . pow ( ( rhythmicComplexity−
rhythmFactor ) , 2) ;

176

177 // c a l c u l a t e t o n a l i t y f a c t o r

178 f loat t o n a l i t y F a c t o r = ( f loat ) notesInRange / ( f loat ) l ength ;

179

180 // c a l c u l a t e harmony f a c t o r

181 f loat harmonyFactor = ( f loat ) no t e s InSca l e / ( f loat ) l ength ;

182

183 harmonyFactor = 1 − ( f loat ) Math . pow ( ( harmony − harmonyFactor ) , 2) ;

184

185 // c a l c u l a t e a r t i c u l a t i o n f a c t o r

186 averageLength = sumLengths / ( f loat ) l ength ;

187

188 f loat a r t i c u l a t i o n F a c t o r = 1 − ( f loat ) Math . pow ( ( averageLength −
ar t i cu la t ionMean ) , 2) ;

189

190 // c a l c u l a t e accen tua t ion f a c t o r

191 f loat accentuat ionFactor = 1 − ( f loat ) Math . pow ( ( ave rageVe loc i ty −
peakVeloc i ty ∗ accentuationMean ) /127 , 2) ;

192
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193 accentuat ionFactor ∗= 1 − ( f loat ) Math . pow( v e l o c i t i e s S t d d e v /127 −
accentuat ionStddev , 2) ;

194

195 this . f i t n e s s = rhythmFactor ∗ t o n a l i t y F a c t o r ∗ harmonyFactor ∗
a r t i c u l a t i o n F a c t o r ∗ accentuat ionFactor ;

196 }
197

198

199 public void mutate ( ) {
200

201 f loat f = r . nextFloat ( ) ;

202 i f ( f > 0 .9 f ) {
203

204 int notePos = r . next Int ( l ength ) ;

205

206 int pos = r . next Int (8 ) ;

207

208 int [ ] noteArray = byteToIntArray ( notes [ notePos ] ) ;

209

210 i f ( noteArray [ pos ] == 0) {
211 noteArray [ pos ] = 1 ;

212 } else {
213 noteArray [ pos ] = 0 ;

214 }
215

216 notes [ notePos ] = intArrayToByte ( noteArray ) ;

217

218 int [ ] ve lArray = byteToIntArray ( v e l o c i t i e s [ notePos ] ) ;

219

220 i f ( ve lArray [ pos ] == 0) {
221 velArray [ pos ] = 1 ;

222 } else {
223 velArray [ pos ] = 0 ;

224 }
225

226 v e l o c i t i e s [ notePos ] = intArrayToByte ( velArray ) ;

227 }
228

229 }
230

231

232 private int [ ] byteToIntArray (byte byteIn ) {
233
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234 int [ ] byteOut = new int [ 8 ] ;

235

236 i f ( byteIn >= 0) {
237

238 int temp = byteIn ;

239

240 for ( int i = 0 ; i < 7 ; i++) {
241

242 byteOut [ i ] = temp % 2 ;

243 temp /= 2 ;

244

245 }
246 } else {
247

248 byteOut [ 7 ] = 1 ;

249 }
250

251 return byteOut ;

252 }
253

254 private byte intArrayToByte ( int [ ] intArray ) {
255

256 i f ( intArray [ 7 ] == 1) {
257

258 return −1;

259

260 } else {
261

262 byte b = 0 ;

263

264 for ( int i = 0 ; i < 7 ; i++) {
265

266 b += Math . pow(2 , i ) ∗ intArray [ i ] ;

267

268 }
269

270 return b ;

271 }
272 }
273 }

Listing B.3: Full Java code of the Sequence class used in SimpleGA
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1 import com . cyc l i ng74 . max . ∗ ;

2 import java . u t i l . Random ;

3 import java . u t i l . Arrays ;

4

5 public class SimpleGA extends MaxObject {
6

7 private f loat harmony = 0 .5 f ;

8 private int mode = 1 ;

9 private int keynote = 60 ;

10 private int r e g i s t e r = 0 ;

11 private int melodicRange = 2 ;

12

13 private int meter = 4 ;

14 private f loat rhythmicComplexity = 0 .5 f ;

15 private f loat art i cu la t ionMean = 0 .7 f ; // mean note l eng th , s t ddev

0.3 gauss ian

16

17 private int peakVeloc i ty = 127 ;

18 private f loat accentuationMean = 0.77 f ;

19 private f loat accentuat ionStddev = 0.13 f ;

20

21 private stat ic f ina l int POPULATION SIZE = 1000 ;

22

23 private Random r = new Random( ) ;

24

25 private Sequence [ ] populat ion = new Sequence [POPULATION SIZE ] ;

26

27 public SimpleGA (Atom [ ] args ) {
28

29 d e c l a r e A t t r i b u t e ( ”harmony” ) ;

30 d e c l a r e A t t r i b u t e ( ”mode” ) ;

31 d e c l a r e A t t r i b u t e ( ” keynote ” ) ;

32 d e c l a r e A t t r i b u t e ( ” r e g i s t e r ” ) ;

33 d e c l a r e A t t r i b u t e ( ”melodicRange” ) ;

34 d e c l a r e A t t r i b u t e ( ”meter” ) ;

35 d e c l a r e A t t r i b u t e ( ” rhythmicComplexity ” ) ;

36 d e c l a r e A t t r i b u t e ( ” ar t i cu la t ionMean ” ) ;

37 d e c l a r e A t t r i b u t e ( ” peakVeloc i ty ” ) ;

38 d e c l a r e A t t r i b u t e ( ” accentuationMean ” ) ;

39 d e c l a r e A t t r i b u t e ( ” accentuat ionStddev ” ) ;

40

41

42 declareTypedIO ( ” b f i i i i i f f i f f ” , ” l ” ) ;
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43

44 s e t I n l e t A s s i s t (new St r ing [ ] { ”bang to output next pattern ” ,

45 ” f l o a t to s e t harmony value ” ,

46 ” i n t to s e t mode value ” ,

47 ” i n t to s e t keynote va lue ” ,

48 ” i n t to s e t r e g i s t e r va lue ” ,

49 ” i n t to s e t melodic range value ” ,

50 ” i n t to s e t meter va lue ” ,

51 ” f l o a t to s e t rhythmic complexity value (0 .0 −1 .0) ” ,

52 ” f l o a t to s e t mean a r t i c u l a t i o n note l ength value ” ,

53 ” i n t to s e t peak MIDI v e l o c i t y value ” ,

54 ” f l o a t to s e t mean accentuat ion ” ,

55 ” f l o a t to s e t accentuat ion std dev” }) ;

56

57 s e t O u t l e t A s s i s t (new St r ing [ ] { ” pattern o f 8∗meter notes ” ,

58 ” i n f o o u t l e t ” }) ;

59

60 }
61

62 private void evo lve ( ) {
63

64 // e va l ua t e popu la t i on f i t n e s s

65 for ( int i = 0 ; i < POPULATION SIZE; i++) {
66 populat ion [ i ] . c a l c u l a t e F i t n e s s ( rhythmicComplexity ,

art i cu lat ionMean , accentuationMean , accentuat ionStddev , mode ,

keynote , melodicRange , r e g i s t e r , harmony , peakVeloc i ty ) ;

67 }
68

69

70 // s e l e c t POPULATION SIZE/2 f i t t e s t e n t i t i e s

71 Arrays . s o r t ( populat ion ) ;

72

73 Sequence [ ] s e l ec tedForReproduct ion = new Sequence [POPULATION SIZE

/ 2 ] ;

74

75 for ( int i = 0 ; i < POPULATION SIZE/2 ; i++) {
76 se l ec tedForReproduct ion [ i ] = populat ion [ ( POPULATION SIZE−1)− i ] ;

77 }
78

79 // reproduce 50 f i t t e s t e n t i t i e s

80 Sequence [ ] o f f s p r i n g = new Sequence [POPULATION SIZE / 2 ] ;

81 for ( int i = 0 ; i < POPULATION SIZE/4 ; i++) {
82 Sequence [ ] parents = new Sequence [ 2 ] ;
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83 parents [ 0 ] = se l ec tedForReproduct ion [ i ] ;

84 parents [ 1 ] = se l ec tedForReproduct ion [ ( POPULATION SIZE/2−1)− i ] ;

85

86 Sequence [ ] c h i l d r e n = reproduce ( parents ) ;

87

88 // mutate

89 c h i l d r e n [ 0 ] . mutate ( ) ;

90 c h i l d r e n [ 1 ] . mutate ( ) ;

91

92 o f f s p r i n g [ i ∗2 ] = c h i l d r e n [ 0 ] ;

93 o f f s p r i n g [ i ∗2+1] = c h i l d r e n [ 1 ] ;

94 }
95

96 // merge wi th popu la t i on

97 for ( int i = 0 ; i < POPULATION SIZE/2 ; i++) {
98 populat ion [ i ] = se l ec tedForReproduct ion [ i ] ;

99 }
100 for ( int i = POPULATION SIZE/2 ; i < POPULATION SIZE; i++) {
101 populat ion [ i ] = o f f s p r i n g [ i−POPULATION SIZE / 2 ] ;

102 }
103

104 }
105

106

107

108 private Sequence [ ] reproduce ( Sequence [ ] parents ) {
109

110 Sequence [ ] c h i l d r e n = new Sequence [ 2 ] ;

111

112 byte [ ] notes1 = new byte [ meter ] ;

113 byte [ ] notes2 = new byte [ meter ] ;

114

115 byte [ ] v e l o c i t i e s 1 = new byte [ meter ] ;

116 byte [ ] v e l o c i t i e s 2 = new byte [ meter ] ;

117

118 f loat [ ] durat ions1 = new float [ meter ] ;

119 f loat [ ] durat ions2 = new float [ meter ] ;

120

121 for ( int i = 0 ; i < meter ; i++) {
122 notes1 [ i ] = parents [ 0 ] . getNotes ( ) [ i ] ;

123 notes2 [ i ] = parents [ 1 ] . getNotes ( ) [ i ] ;

124

125 v e l o c i t i e s 1 [ i ] = parents [ 0 ] . g e t V e l o c i t i e s ( ) [ i ] ;
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126 v e l o c i t i e s 2 [ i ] = parents [ 1 ] . g e t V e l o c i t i e s ( ) [ i ] ;

127

128 durat ions1 [ i ] = parents [ 0 ] . getDurat ions ( ) [ i ] ;

129 durat ions2 [ i ] = parents [ 1 ] . getDurat ions ( ) [ i ] ;

130 }
131

132 byte temp = notes1 [ 0 ] ;

133 notes1 [ 0 ] = notes2 [ 0 ] ;

134 notes2 [ 0 ] = temp ;

135

136 temp = notes1 [ 1 ] ;

137 notes1 [ 1 ] = notes2 [ 1 ] ;

138 notes2 [ 1 ] = temp ;

139

140 temp = v e l o c i t i e s 1 [ 0 ] ;

141 v e l o c i t i e s 1 [ 0 ] = v e l o c i t i e s 2 [ 0 ] ;

142 v e l o c i t i e s 2 [ 0 ] = temp ;

143

144 temp = v e l o c i t i e s 1 [ 1 ] ;

145 v e l o c i t i e s 1 [ 1 ] = v e l o c i t i e s 2 [ 1 ] ;

146 v e l o c i t i e s 2 [ 1 ] = temp ;

147

148 f loat temp2 = durat ions1 [ 0 ] ;

149 durat ions1 [ 0 ] = durat ions2 [ 0 ] ;

150 durat ions2 [ 0 ] = temp2 ;

151

152 temp2 = durat ions1 [ 1 ] ;

153 durat ions1 [ 1 ] = durat ions2 [ 1 ] ;

154 durat ions2 [ 1 ] = temp2 ;

155

156

157 c h i l d r e n [ 0 ] = new Sequence ( ) ;

158 c h i l d r e n [ 0 ] . s e tNotes ( notes1 ) ;

159 c h i l d r e n [ 0 ] . s e t V e l o c i t i e s ( v e l o c i t i e s 1 ) ;

160 c h i l d r e n [ 0 ] . s e tDurat ions ( durat ions1 ) ;

161

162 c h i l d r e n [ 1 ] = new Sequence ( ) ;

163 c h i l d r e n [ 1 ] . s e tNotes ( notes2 ) ;

164 c h i l d r e n [ 1 ] . s e t V e l o c i t i e s ( v e l o c i t i e s 2 ) ;

165 c h i l d r e n [ 1 ] . s e tDurat ions ( durat ions2 ) ;

166

167 return c h i l d r e n ;

168 }
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169

170 private void r e s e tPopu la t i on ( ) {
171

172 for ( int i = 0 ; i < POPULATION SIZE; i++) {
173 Sequence s = new Sequence ( keynote , melodicRange , r e g i s t e r , meter )

;

174 populat ion [ i ] = s ;

175 }
176

177 }
178

179 public void i n l e t ( int i ) {
180 int i n l e tNo = g e t I n l e t ( ) ;

181

182 switch ( in l e tNo ) {
183

184 case 2 : mode = i ; break ;

185 case 3 : keynote = i ; break ;

186 case 4 : r e g i s t e r = i ; break ;

187 case 5 : melodicRange = i ; break ;

188 case 6 : meter = i ; break ;

189 case 9 : peakVeloc i ty = i ; break ;

190 }
191 }
192

193 public void i n l e t ( f loat f ) {
194 int i n l e tNo = g e t I n l e t ( ) ;

195

196 switch ( in l e tNo ) {
197 case 1 : harmony = f ; break ;

198 case 7 : rhythmicComplexity = f ; break ;

199 case 8 : a r t i cu la t ionMean = f ; break ;

200 case 10 : accentuationMean = f ; break ;

201 case 11 : accentuat ionStddev = f ; break ;

202

203 }
204 }
205

206 public void bang ( ) {
207

208 r e s e tPopu la t i on ( ) ;

209

210 for ( int i = 0 ; i < 10 ; i++) {
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211 evo lve ( ) ;

212 }
213

214 // e va l ua t e popu la t i on f i t n e s s

215 for ( int i = 0 ; i < POPULATION SIZE; i++) {
216 populat ion [ i ] . c a l c u l a t e F i t n e s s ( rhythmicComplexity ,

art i cu lat ionMean , accentuationMean , accentuat ionStddev , mode ,

keynote , melodicRange , r e g i s t e r , harmony , peakVeloc i ty ) ;

217 }
218

219 // s e l e c t 4 f i t t e s t e n t i t i e s

220 Arrays . s o r t ( populat ion ) ;

221

222 St r ing outputStr ing = new St r ing ( ) ;

223

224 int counter = 1 ;

225

226 for ( int i = POPULATION SIZE−1; i > ( (POPULATION SIZE−1)−4) ; i−−) {
227 for ( int j = 0 ; j < meter ; j++) {
228

229 o u t l e t (0 , new Atom [ ] {Atom . newAtom( counter ) , Atom . newAtom(

populat ion [ i ] . getNotes ( ) [ j ] ) ,

230 Atom . newAtom( populat ion [ i ] . g e t V e l o c i t i e s ( ) [ j ] ) , Atom . newAtom(

populat ion [ i ] . getDurat ions ( ) [ j ] ) }) ;

231

232 counter++;

233 }
234 }
235

236 }
237 }

Listing B.4: Full Java code of the SimpleGA class
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Five interviews were conducted, two of them in English, and three of them in Ger-

man; all of them are printed in their original language. The experts were asked to

evaluate four exemplary sound files named qu1 to qu4 regarding their emotional con-

tent. The test files were produced using the prototype application with the settings

calm, happy, sad and tense respectively.

C.1. DI (FH) Matthias Husinsky

Lecturer, University of Applied Sciences, St. Pölten, Austria

(interview conducted in German)

1. Sind die vorgelegten Musikstücke Ihrer Meinung nach geeignet, Emo-

tionen oder Gefühlszustände auszudrücken? Wenn ja, welche? Wenn

nein, welche musikalischen Elemente fehlen?

Meinem Geschmack nach transportieren eigentlich alle Musikstücke eine ähnliche

Emotion, die ich am ehesten als “Verwirrtheit” oder “Orientierungslosigkeit”

beschreiben würde. Verursacht wird diese Gefühlsregung durch das Vorkom-

men vieler dissonanter Intervalle. Ein zusätzliches Element – “Spannung”

oder “Aufgeregtheit” - kommt durch unterschiedliche Tempi hinzu, wobei eine

höhere Geschwindigkeit bei diesen Stücken mit höherer Spannung korreliert.

2. In welchem Ausmaß hat die Wahl des musikalischen Stils oder Gen-

res Einfluss auf die repräsentierten Gefühlszustände?

Die Stücke haben einen sehr ähnlichen Stil, variiert wird vor allem das Tempo

(und eventuell der Crash Einsatz des Schlagwerks). Der Stil ist hier bei diesen

Stücken nicht entscheidend, da die oben erwähnten Dissonanzen zuviel Gewicht

haben und andere Parameter überdecken.

3. In welchem Ausmaß hat die Wahl der Instrumentierung bzw. der

eingesetzten Klangfarbe Einfluss auf die repräsentierten Gefühlszu-

stände?
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Leider schwer zu sagen, da die Instrumentenwahl in allen Stücken gleich ist.

Hier gilt dasselbe wie oben – die Dissonanzen wiegen mehr als andere Elemente,

also auch die Instrumentierung. Würde das Stück musikalisch “gewohntere”

Formen aufweisen, würden die andere Parameter mehr in den Vordergrund

rücken.

4. Worin sehen Sie die Vor- und Nachteile des Einsatzes von genera-

tiven Ansätzen zur automatischen, dynamischen Komposition von

Medienmusik (zum Beispiel für Videoclips, interaktive Installatio-

nen usw.)?

Vorteil: Große Arbeits (= Zeit + Geld) Ersparnis.

Nachteil: Auch hier muss ein gewisses musikalisches Verständnis vorhanden

sein, um zu brauchbaren Ergebnissen zu kommen. Ich sehe eine solche App-

likation momentan zwischen den beiden Polen:

1. strenge Musikalische Vorgabe mit Einflussmöglichkeiten auf eher primitive

Parameter (Tempo, Tonart, Intensität einzelner Instrumente)

2. große Freiheit in der musikalischen Gestaltung, aber damit auch mehr

“Fehlerquellen” für untrainierte Anwender.

Ausrichtung des Systems auf ersten Punkt führt zu “funktionierenden” Stücken,

die aber wenig Unterschiede zueinander aufweisen und daher schnell uninteres-

sant werden. Ausrichtung auf zweiteren Punkt setzt wieder ein musikalisches

Vorwissen (bei der Steuerung der Parameter) voraus, das eben vielen Men-

schen fehlt, weshalb das System nicht sinnvoll einzusetzen ist.

Hier einen brauchbaren Kompromiss zu finden ist die Herausforderung.
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C.2. Mag. Michael Jaksche, MA

Lecturer, University of Applied Sciences, St. Pölten, Austria

(interview conducted in German)

1. Sind die vorgelegten Musikstücke Ihrer Meinung nach geeignet, Emo-

tionen oder Gefühlszustände auszudrücken? Wenn ja, welche? Wenn

nein, welche musikalischen Elemente fehlen?

qu1: Trott, Freudlosigkeit, Mühsal

qu2: Aufbruch, Stimmungsumschwung nach einer guten Nachricht, Aufgekratztheit

qu3: Melancholie, Nachdenklichkeit

qu4: etwas kündigt sich an – Erwartung, Ungewissheit

Anmerkung: Die perkussive Stimme hemmt bei allen vier Beispielen die Wirkung

eher (subjektiver Eindruck); liegt vermutl. 1. an den perkussiven Sounds

(Klangfarbe), 2. an den Lautstärkeverhältnissen (Perkussion zu präsent?), 3.

an der statischen Rhythmik

2. In welchem Ausmaß hat die Wahl des musikalischen Stils oder Gen-

res Einfluss auf die repräsentierten Gefühlszustände?

Der Einfluss hängt vermutl. am stärksten mit den musikalischen Hörgewohnheiten

des Rezipienten/der Rezipientin zusammen – die Gefühlszustände, die “erkannt”

werden, stehen zu diesen in Relation

3. In welchem Ausmaß hat die Wahl der Instrumentierung bzw. der

eingesetzten Klangfarbe Einfluss auf die repräsentierten Gefühlszu-

stände?

Starker Einfluss! Ein möglicher Grund: Viele Klangfarben werden mit unter-

schiedlichen mechanischen Instrumenten assoziiert, die allerdings unterschiedliche

Spielweisen verlangen; insofern sind Klangfarbe und andere musikalische “Pa-

rameter” wie Rhythmik, Melodik und Harmonik eng verwoben und müssen

aufeinander abgestimmt werden. Klänge, die keine solchen Assoziationen auslösen

können im Sinne wirkungsvoller automatischer Komposition vermutlich freier

gehandhabt werden.

4. Worin sehen Sie die Vor- und Nachteile des Einsatzes von genera-

tiven Ansätzen zur automatischen, dynamischen Komposition von
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Medienmusik (zum Beispiel für Videoclips, interaktive Installatio-

nen usw.)?

Vorteile: Kostenersparnis (inkl. Zeitersparnis in der Produktion), RezipientIn

kommt eine aktivere Rolle (“Prosumer”), dynamische Komposition bedeutet

auch, dass keine zwei Durchgänge exakt gleich sind (kann auch ein Nachteil

sein)

Nachteile: Vermutung, dass generative Musik (die nicht in einem zweiten

Durchgang nachbearbeitet wird) puncto Melodik Schwächen (Beliebigkeit u.ä.)

aufweist

P.S.: Beim nochmaligen Durchhören in anderer Reihenfolge hat sich wieder

bestätigt, dass der Kontext eine enorme Rolle hinsichtlich der Wirkung spielt.
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C.3. Dr Martin Parker

Programme Director of the MSc Sound Design course, University of Edinburgh,

United Kingdom

(interview conducted in English)

1. Are the provided pieces of music, in your opinion, capable of express-

ing emotions or moods? If yes, which ones? If not, which musical

elements are missing?

No, not capable of expressing the emotions or moods but certainly capable of

underscoring them. 3 and 4 are particularly effective, 1 is much less so. They

“resemble” music and in a context where the viewer is not just listening by

looking too, these could be stretched out to work well.

2. To what extent does the choice of musical style or genre have influ-

ence on represented moods?

This is important as these things are “culturally encoded” in the listener. In

general, most listeners know how to interpret a classical orchestra, a rock band

and drum and bass. These “styles” say more about the emotional intention

than the content perhaps.

3. To what extent does the choice of instrumentation or timbre have

influence on represented moods?

Huge. Leading on from answer to question 2, the instrumentation is massively

important as is the way each instrument is “played”. Micro shadings on the

attack time of keyboards, amplitude of drum patterns, the genre and attitude

of the genre are the first things to be read and understood by the viewer. Be

good to hear an example with some NI battery instruments on the drums,

perhaps sending the keyboards thrrough a VST guitar plugin and using “real”

drumkit samples would make a huge difference, especially on track 2.

4. What advantages and disadvantages do you see in the use of gener-

ative approaches for the automated, dynamic composition of media

music (e.g. for short video clips, interactive installations etc.)?

Advantages

Shorter time span between demand and result.

Generation of sequence data that can then be shaped into something more

interesting by a composer speeds the compositional process : Define the type
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of area, generate data, shape data by hand into desired result

Data can be mapped to any sounds

Thematic links between different voices are generated naturally

An interesting line of investigation that has potential to be very fruitful.

Disadvantages

Seeds for the system need to be interesteing in their own right

Many other parameters need to be controlled to create a musical experience

Musical timing is perhaps too accurate, requires some “jitter”. Mapping of

data to instruments needs to be done carefully, can’t be done by someone who

has not got experience.

Tricky to emulate genres but genre is the most important “signpost” to un-

derstanding emotional signifiers between music and image.

It is very hard for an audience to interpret electronic sounds with image, they

are acousmatic and uncomfortable. However, the sounds of instruments are

easier for the audience to bear and understand. (Michel Chion).
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C.4. FH-Prof. DI Hannes Raffaseder

Programme Director of the Telecommunications & Media Masters course and Head

of Institute of Media Production, University of Applied Sciences, St. Pölten, Austria

(interview conducted in German)

1. Sind die vorgelegten Musikstücke Ihrer Meinung nach geeignet, Emo-

tionen oder Gefühlszustände auszudrücken? Wenn ja, welche? Wenn

nein, welche musikalischen Elemente fehlen?

Ja, zumindest in Ansätzen.

qu1: langweilig, traurig,...

qu2: freudig, ausgelassen, aufgeregt

qu3: ängstlich,...

qu4: stressig,hektisch,...

2. In welchem Ausmaß hat die Wahl des musikalischen Stils oder Gen-

res Einfluss auf die repräsentierten Gefühlszustände?

Tempo, Taktart, Dichte der musikalischen Elemente, Klanggestaltung, Melodie-

führung etc. haben sicher einen großen Einfluss auf die rep. Gefühlszustände.

Zum Teil bestimmten diese Elemente auch die stitlistische Zuschreibung. Es

sollte daher also ein gewisser Zusammenhang bestehen. Es gibt aber durch

vielfältige Variation der Parameter auch innerhalb einer Stilistik ein große

Bandbreite um Stimmungen darzustellen.

3. In welchem Ausmaß hat die Wahl der Instrumentierung bzw. der

eingesetzten Klangfarbe Einfluss auf die repräsentierten Gefühlszu-

stände?

Meiner Meinung nach eine sehr große. Die Beispiele zeigen aber, dass selbst bei

weitgehend gleicher Klanggestaltung durch Variation anderer Elemente Stim-

mungen dargestellt werden können.

4. Worin sehen Sie die Vor- und Nachteile des Einsatzes von genera-

tiven Ansätzen zur automatischen, dynamischen Komposition von

Medienmusik (zum Beispiel für Videoclips, interaktive Installatio-

nen usw.)?

Vorteile: rapid Prototyping, automatische Anpassung an User-Eingaben bei

interaktiven Anwendungen, Möglichkeit für “neue” musikalische Ansätze jen-

seits gängiger, oft verbrauchter Filmmusikklischees
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Nachteil: Musikalische Qualität, Einschränkung der musikalischen Parameter,

Einschränkung bei den Klangfarben, Einschränkung auf elektronische Sounds

bzw. Samples
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