
Furnishing HCI Patterns to Support Modeling and Generation of ... 27

Furnishing HCI Patterns to Support Modeling

and Generation of Interactive User Interfaces

Jürgen Engel, Christian Herdin, Christian Märtin

Augsburg University of Applied Sciences
Faculty of Computer Science

{Juergen.Engel, Christian.Herdin, Christian.Maertin}@hs-augsburg.de

Abstract

The construction of interactive software typically requires the skills of software
developers and HCI specialists who cooperate intensively with platform and
marketing experts in order to arrive at solutions with the required high levels of
software quality, usability, and user experience. The combination of model-
based user interface development practices with pattern-based approaches that
specify HCI- and software-patterns in a formalized way and respect emerging
standards, can facilitate and automate the software process, reduce the develop-
ment costs, and lead to solutions that can easily be adapted to varying contexts
and target devices. This paper highlights the capabilities of the PaMGIS frame-
work to facilitate the construction of abstract user interface models. It is dis-
cussed, how pattern descriptions that capture important parts of the design
knowledge should be organized in order to be automatically processed during the
modeling process.

1 Introduction

Interactive software has become an indispensable ingredient of modern hu-
man life. Independent from time and location, people are used to interact
with products built around interactive software components, such as web
applications, telecommunication devices, car navigation systems, smart home
appliances, or other electronic equipment. Nowadays software products run-
ning on a variety of devices with individual intrinsic potentialities and limita-
tions demand high usability as well as consistent and appealing user expe-
rience. Suppliers encounter tough competition and must look after cost effec-

28 Jürgen Engel, Christian Herdin, Christian Märtin

tiveness as well as time-to-market, which is crucial for their business. It is
nearly impossible to meet all requirements simultaneously when exercising
traditional software engineering and development processes. A promising
way out of this dilemma is the application of a model-driven approach that
allows for describing the particular aspects of the intended user interface by
means of distinct models at different abstraction levels. Model-driven tech-
niques are well accepted by the software engineering community and various
model-based user interface development environments (MB-UIDE) have
been introduced.

We have combined model-based user interface development practices
with pattern-based approaches that specify HCI-patterns in a formalized way
and respect emerging standards. Result is the framework for Pattern-based
Modeling and Generation of Interactive Systems (PaMGIS) (cf. Engel &
Märtin 2009) which is a MB-UIDE designed according to the CAMELEON
Reference Framework (cf. Calvary et al. 2002). It helps to facilitate and auto-
mate parts of the software development process and leads to solutions that
can easily be adapted to varying contexts and target devices.

2 Related Work

Model-based user interface development environments (MB-UIDE) intro-
duce models to the development process of interactive applications. Various
established MB-UIDE and model-driven approaches that can be used for
facilitating the development process for interactive systems are discussed in
da Silva (2001), Engel et al. (2014), and Märtin et al. (2013). The models
used by these approaches can be task- or object-oriented and contain func-
tional domain and data requirements at different abstraction levels for the
interactive system under development. Models used by MBUID environ-
ments typically are also used for mapping and linking the functional re-
quirements of the business logic to the different abstract and concrete re-
presentations of the user interface to guarantee user interface quality, usa-
bility, and good user experience for the user of the final interactive appli-
cation. The role of the various models used in MB-UID environments varies
with respect to the modeling purpose. Typically more than one model is ex-
ploited during the development process to construct the desired solution in-
teractively or (semi-) automatically.

Furnishing HCI Patterns to Support Modeling and Generation of ... 29

HCI patterns are a means to document design decisions based on estab-
lished design solutions or best practice work. Patterns represent a relation
between a certain design problem and a solution in a given context. The use
of patterns has a number of advantages (cf. Seffah 2010). Patterns are simple
and easily readable for designers, developers and researchers, and they are
useful for the collaboration between the involved people. Furthermore, pat-
terns are based on established knowledge and capture fundamental principles
for good design. In order to ensure a certain standard, patterns are summa-
rized in so-called pattern catalogs (cf. Alexander 1977). A catalog of related
patterns that belongs to a common domain is called a pattern language (cf.
Seffah 2010) or pattern collection. For allowing for a clear definition and
comparison of patterns, so-called schemes were introduced by Alexander
(1977). They were grouped into sections of textual and graphical descrip-
tions. However, no standardized description of patterns evolved from these
schemes, as numerous pattern catalogs were created based on a different
understanding of attributes. To solve this problem, a standardized pattern
language was proposed, based on XML: the Pattern Language Markup Lan-
guage (PLML). PLML unifies and standardizes the schemes of different au-
thors with the help of XML tags. Each XML tag represents a part of the
scheme. Version v1.1 of PLML specifies that the documentation of a certain
pattern should consist of the following elements: a pattern identifier, name,
alias, illustration, descriptions of the respective problem, context and solu-
tion, forces, synopsis, diagram, evidence, confidence, literature, implementa-
tion, related patterns, pattern links, and management information (cf. Fincher
2003).

3 Combined Model- and Pattern-based
 Development Approach

The PaMGIS framework combines a model-driven approach and pattern-
based development techniques. As depicted in Figure 1, it allows for creation
of abstract user interface models (AUI) on the basis of diverse fundamental
information about the users, the users’ tasks, dialog structure, data architec-
ture, used devices, and environment. An AUI designer can make use of pat-
terns stored in a pattern repository. The AUI is iteratively transformed into a
concrete user interface (CUI) model which in turn is used to generate respec-
tive user interface source code for the intended system platform.

30 Jürgen Engel, Christian Herdin, Christian Märtin

Figure 1 Functional overview of the PaMGIS framework

3.1 PaMGIS Software Development Life-Cycle

The focus of the PaMGIS framework lies on the pattern- and model based
construction of the interactive parts, i.e. the user interface, of the software
system under development. However, for each non-trivial application the
business logic or content parts of the system have to be considered as well.
Even if automation for the content parts cannot be driven as far as for the
user interface parts, both aspects of the target software system can profit
from software patterns during the iterative software life-cycle. In Märtin et
al. (2010) and Kaelber & Märtin (2011) it was shown for a media-intensive
application from the domain of knowledge based information systems, how
both, patterns related to the user interface, and domain patterns for the busi-

Furnishing HCI Patterns to Support Modeling and Generation of ... 31

ness logic and functionality, can be applied in the overall software life-cycle
through all phases from very abstract models to concrete program code.

As current software engineering practice shows, there is more than one
accepted software development life-cycle for the overall software system,
depending, e.g., on the size of the system under development, the target do-
main, or the experience background of the software developers. In order to
integrate the PaMGIS framework into most accepted software processes from
waterfall, spiral model, to agile processes (e.g. Scrum), and various object-
oriented methods, we have established so-called embedding-links into our
pattern representations that allow for the mapping of abstract, semi-abstract
and concrete user interface patterns to parts of the UML object-models that
represent the business data and functionality behind the user interface (cf.
Märtin et al. 2013). In addition, the PaMGIS framework can easily be cou-
pled with standard development environments like Eclipse to access both,
user interface and domain models from the same developer interface.

3.2 PaMGIS Pattern Representation

In order to appropriately support the modeling and UI generation process the
patterns are described according to a particular markup language named
PaMGIS Pattern Specification Language (PPSL). It is a further development
of PLML and remedies some of PLML’s inherent weaknesses, notably in
terms of pattern relation modeling and provision of details required for auto-
mated pattern processing (cf. Engel et al. 2012).

Amongst others, compared to PLML major extensions have been made to
the <Implementation> description element, which plays a key role regarding
the capability of patterns to facilitate the construction of AUI models. It is
now structured to hold fragments of PaMGIS’s basic abstract models, inclu-
ding task model, dialog model, and interaction model fragments. Task model
fragments are specifications of the pattern-intrinsic user tasks and their rela-
tionships based on a modified ConcurTaskTrees (CTT) notation (cf. Paternò
2001). Dialog model fragments contain context-specific definitions of dia-
logs and their relations based on dialog graphs (cf. Forbrig & Reichart 2007).
Finally, the interaction model fragments are kinds of AUI data models and
provide abstract specifications of interactive elements and dynamic aspects
of the user interface dialogs. These model fragments are intended to be
automatically integrated into the overall PaMGIS abstract models as soon as
the AUI designer applies them. They can be regarded as building blocks for

32 Jürgen Engel, Christian Herdin, Christian Märtin

the PaMGIS models which speed up the model design process, feature reuse
of design work, and positively contribute to high usability and acceptable
user experience of the final user interface. In the following more details of
how to specify and store the model fragments are provided by means of a
tangible example.

4 Example

We illustrate the practical realization of the pattern description element <Im-
plementation> by means of the Poll pattern which is published within the
pattern collection of Martijn van Welie. The intention of this pattern is to
prompt users’ opinions regarding a particular topic of the current web site.
The original pattern is specified as shown in Table 1 (cf. van Welie 2014).

Table 1: Excerpt of the specification of the “Poll” pattern according to van
Welie (2014)

Element Description

Problem Users want to state their opinion about a certain statement that is rele-
vant to the site’s content.

Solution List the statements as exclusive options and present the results directly
after voting.

Use when You are designing a site where interaction with the users is desired.
Typically this will be a news site or community site where visitors are
to be encouraged to share their opinions and improve interactivity.

How The poll consists of two steps. First the list of options is presented,
usually using radio buttons, together with a ‘vote’ button. After click-
ing the vote button, the results are displayed. The results include both
a percentage and an absolute number.

Why A poll is a very simple and direct page element that invites users to
interact with the site. Users can even do it anonymously so there is no
barrier at all to participate. Polls are often linked to content on the site
such as articles or products, and the results of a poll can be linked to a
discussion in a forum.

We usually employ the pattern in a more generalized way and use it to
query users’ attitudes towards any matter of fact, not solely towards the web
site at hand. Further we do not yet decide the concrete appearance (i.e. radio
buttons) of the related user interface element but define an abstract user inter-
face (AUI) element which will be replaced later by a concrete one when

Furnishing HCI Patterns to Support Modeling and Generation of ... 33

iteratively transforming the AUI to CUI. Finally we slightly change the im-
plied course of action and enable access to the result values not until the vote
has been accomplished. At the end of the day the UI must display a question
to the user, offer a set of possible answers to that question from which the
user can choose exactly one, and provide three different interactor elements
to confirm the choice, to request the poll results, and to finally abandon the
poll procedure.

In order to populate the <Implementation> description element of the Poll
pattern according to the PPSL specification it is necessary to analyze the
pattern and to specify its inherent portions of the task, dialog, and data mo-
dels.

4.1 Task Model Fragment

As illustrated in Figure 2, the root element of the task model is an abstract
task named “participate in poll” which consists of the three subtasks “vote”,
“retrieve results”, and “abandon”. Here, the “retrieve results” task is defined
to be optional and therefore is not necessarily executed by the user. The
“vote” subtask consists, in turn, of subordinated machine tasks for displaying
the question and the possible answers, user tasks for reading the system out-
put and picking the best fitting answer, interaction tasks to select that answer
and submit the choice, and an additional machine task to send the data from
the user interface to the instance representing the business logic of the sys-
tem. The “retrieve results” task incorporates an interaction task to request the
poll results and three machine tasks to send out that request, to receive the
related result data, and to display the values on the screen.

Figure 2 Entire task model fragment of the Poll pattern

Amongst others, the user tasks indicate the required cognitive workload of
the user and provide information to evaluate whether he/she has been pro-

34 Jürgen Engel, Christian Herdin, Christian Märtin

vided with all data necessary to correctly complete the next process step.
Apart from that, they do not considerably contribute to the UI specification
and are therefore not considered within the further generation process.
Hence, we remove them from the task model fragment. After that, some of
the remaining subordinated tasks possess temporal dependencies which are
indicated by the temporal operator enabling with information passing ([]>>).
In this case both tasks deal with the selfsame data element respectively the
selfsame set of data. Therefore, in these cases we can eliminate the respective
machine tasks without losing significant information required for the user
interface generation process. In the given example, these machine tasks are
display answers, send data, send request, and receive data. The remaining
task model fragment is depicted in Figure 3.

Figure 3 Task model fragment of the Poll pattern further reduced by redundant
machine tasks

The XML representation of this task model fragment is shown in Fi-
gure 4. The notation is a variant of the XML-compliant CTT notation. It
basically specifies all involved task elements by defining their related proper-
ties, such as unique identifier, name and type of the task, whether the task is
optional and/or iterative, the root element of the current sub-tree (called Pa-
rent), and, if applicable, the predecessor and successor task elements (called
SiblingLeft and SiblingRight) together with their temporal dependencies.
Further all task/sub-task relations are expressed within the model. Details of
the top element of the task model fragment accentuated in bold (lines 5 to 8)
have to be adjusted as soon as the task model fragment is integrated into the
overall task model of the intended user interface.

Furnishing HCI Patterns to Support Modeling and Generation of ... 35

<Fragment Type="TaskModel" Identifier="TMF_0001">

 <Task Identifier="TSK_0101" Category="abstraction" Iterative="false"

 Optional="false" Frequency=" ">

 <Name>participate in poll</Name>

 <TemporalOperator name=""/>

 <Parent name=""/>

 <SiblingLeft name="" TempOp="Interleaving"/>

 <SiblingRight name=""/>

 <SubTask>

 <Task Identifier=TSK_0102" " Category="abstraction" Iterative="false"

 Optional="false" Frequency=" ">

 <Name>vote</Name>

 ...

 <IeRef>UIE_0011</IeRef>

 </Task>

 ...

 </SubTask>

 </Task>

</Fragment>

Figure 4 Excerpt of the XML representation of the Poll pattern’s task model fragment

The <TemporalOperator>, <Parent>, <SiblingLeft>, and <SiblingRight>
elements of the root task can be automatically aligned to the circumstances of
the overall task model. The <TempOp> attribute of the <SiblingLeft> ele-
ment is designated to be placed in the <TemporalOperator> element of the
current left sibling task and subsequently deleted from the task model frag-
ment. After the integration of the fragment into the overall task model it
might become necessary to adjust the types of the respective parent tasks, i.e.
to make them abstract tasks. However, also this type conversion can be per-
formed automatically. In addition, each task representing a leaf within the
task tree is equipped with exactly one interaction object that is specified by
means of the <IeRef> tag. It implements a respective link between the task
and the corresponding interaction element specified within the interaction
model fragment (see Section 4.3). Each pattern usually possesses one particu-
lar task model fragment.

4.2 Dialog Model Fragment

Since dialog models can be regarded as platform-specific navigations pat-
terns, they might incorporate several different dialog model fragments. In the
context of PaMGIS dialog models are specified by means of dialog graphs
(cf. Forbrig & Reichart 2007). Here, dialogs are compositions of relevant
tasks and therefore implicitly comprise the interaction elements which are
associated with these tasks. The flow between the various dialogs is specified

36 Jürgen Engel, Christian Herdin, Christian Märtin

by arrows, whereupon the arrowheads indicate the direction. Figure 5 shows
on its left side a possible dialog graph regarding the application of the Poll
pattern on a desktop computer with a large display. All tasks involved in the
poll (please refer to Figure 3) are combined into one single dialog.

Figure 5 Dialog model fragments of the Poll for desktop computers (on the left) and
for mobile devices with small displays (on the right)

The right part of Figure 5 illustrates a possible dialog model for a mobile
device with limited screen space, such as a smart phone. Due to the display
size limits it is not possible or reasonable to display all interaction elements
simultaneously. Therefore, we define two different dialogs with transitions
between them. The question which tasks to include in which dialog can be
answered when having a look at the task model structure. Very often, it is a
promising approach to combine the task elements included in the selfsame
sub-tree because they are closely related to each other. All of them have to be
completed in order to achieve the superordinate goal related to the top ele-
ment of the task sub-tree. In the present case we decide to implement two
dialogs, one for the sub-tree starting with the abstract task vote and likewise a
second one for the retrieve results sub-tree. Since it makes no sense to treat
the remaining single interaction task abandon in a separate dialog, we assign
it to the vote dialog. Thus, the user may vote, optionally have a look at the
results, and finally abandon the poll process. In case of the user likes to view
the results he/she requires an interaction element which allows to navigate to
the second dialog. For that purpose, the optional abstract task retrieve results

Furnishing HCI Patterns to Support Modeling and Generation of ... 37

has been added to the vote dialog. Figure 6 shows the XML compliant model
fragment representation of the dialog for mobile devices as specified above.

<Fragment Type="DialogModel"

Identifier"DMF_0002">

 <DmfName>poll mobile</DmfName>

 <Purpose>mobile phone</Purpose>

 <Dialogs>

 <Dialog Identifier="DLG_1002">

 <DName>vote<DName>

 <Coverage>

 <Task>

 <TaskID>TSK_0102</TaskID>

 <TName>vote</TName>

 <Processing>recursive</Processing>

 </Task>

 <Task> ... </Task>

 </Coverage>

 </Dialog>

 <Dialog Identifier="DLG_1003">

 <DName>results<DName>

 ...

 </Dialog>

 </Dialogs>

 <DialogFlow>

 <Dlg>

 <DlgID>DLG_1002</DlgID>

 <Predecessors>

 <Predecessor Type="">

 <DID></DID>

 <Trigger></Trigger>

 </Predecessor>

 </Predecessors>

 <Successors>

 <Successor

 Type="sequential">

 <DID>DLG_1003</DID>

 <Trigger>

<IeRef>UIE_17</IeRef>

 <Event></Event>

 </Trigger>

 </Successor>

 <Successor Type="">

 <DID></DID>

 <Trigger>

<IeRef>UIE_16</IeRef>

 <Event></Event>

 </Trigger>

 </Successor>

 </Successors>

 </Dlg>

 ...

 </DialogFlow>

</Fragment>

Figure 6 Excerpt of the XML representation of the Poll pattern’s dialog model
fragment for mobile devices

Within its upper part every involved dialog is described by specifying a
unique identifier, a name, and a list of all task elements covered by the dia-
log. The latter are represented as links to the task model fragment. By means
of the <Processing> element it is indicated whether solely the mentioned
subtask itself (exclusive) or also all subtasks shall also be included in the
dialog specification (recursive). In the following part the flow between these
dialogs is configured. This can be done by defining the predecessors and
successors of each dialog and specifying the triggers which cause the transi-
tions between the related dialogs. When integrating the dialog model frag-
ment into the overall dialog model of the intended user interface the parts
marked in bold related to predecessor and successor have to be adjusted.
Some information will be added at a later point in time, i.e. the <Event> ele-
ment will be specified not before the transformation of AUI to CUI elements.

38 Jürgen Engel, Christian Herdin, Christian Märtin

Since the added abstract task is not a leaf in the task tree, it does not pos-
sess a reference to an interaction element within the interaction model frag-
ment. Therefore, we have to introduce one within the dialog model (see
<IeRef> to interaction element with identifier UIE_0017 inside the definition
of the <Trigger> element in the bold marked lines 48 to 51).

After having viewed the poll results we do not like to make users navigate
back to the vote dialog before they are able to finalize the poll process. For
that reason we added the interactive task abandon also to the result dialog.

4.3 Interaction Model Fragment

As already explained above, the interaction model fragment plays the role of
a data model and provides the specifications of the required abstract user
interface (AUI) elements which are referenced inside the task model and
dialog model fragments. The AUI meta model of PaMGIS is very similar to
the one described in Paternò et al. (2009). It specifies AUI elements as sum-
marized in Table 2.

Table 2: Overview of PaMGIS AUI elements

AUI Element Description

Activator activate a user interface element or call a function

Navigator navigate to a different dialog

Output display objects of diverse data types for read-only purposes

Editor manipulable objects of diverse data types

singleChoice select one of several options

multiChoice select none, one or more of several options

The XML representation of the interaction model fragment of the Poll
pattern is illustrated in Figure 7.

Furnishing HCI Patterns to Support Modeling and Generation of ... 39

<Fragment Type="InteractionModel" Identifier"IMF_0001">

 <InteractionElements>

 ...

 <InteractionElement Identifier="IE_0016" Visible="true" Enabled="true"

 <Name>userAction_Abandon</Name>

 <Type>Navigator</Type>

 <Label>Abandon</Label>

 </InteractionElement>

 <InteractionElement Identifier="IE_0017" Visible="true" Enabled="true"

 <Name>userAction_Retrieve_Results</Name>

 <Type>Navigator</Type>

 <Label>Retrieve results</Label>

 </InteractionElement>

 </InteractionElements>

</Fragment>

Figure 7
Excerpt of the XML representation of the Poll pattern’s interaction model fragment

5 Discussion

In this paper, we have outlined our approach to specify HCI patterns formally
and exploit them in order to facilitate user interface modeling and subsequent
support semi-automated pattern processing. Starting with PLML version 1.1
we developed the markup language PPSL which allows for incorporating all
required information into the pattern specifications. Amongst other features,
we textured the so far unstructured <Implementation> description element in
a way that task model, dialog model, and interaction model fragments can be
stored within the patterns. These model fragments can be automatically inte-
grated into the overall PaMGIS abstract models as soon as a pattern is ap-
plied. They serve as building blocks for the constitutive models and acce-
lerate the model design process, feature reuse of design work, and effectively
contribute to high usability and acceptable user experience of the final user
interface.

References

Alexander, C. et al. (1977): A Pattern Language: Towns, Buildings, Construction.
New York: Oxford University Press.

Calvary, G. et al. (2002): The CAMELEON Reference Framework, Document D1.1
of the CAMELEON R&D Project IST-2000-30104.

40 Jürgen Engel, Christian Herdin, Christian Märtin

da Silva, Paulo Pinheiro (2001): User Interface Declarative Models and Develop-
ment Environments: A Survey. In: DSV-IS’00 Proceedings of the 7th Interna-
tional Conference on Design, Specification, and Verification of Interactive
Systems. S. 207–226.

Engel, J. & Märtin, C. (2009): PaMGIS: A Framework for Pattern-based Modeling
and Generation of Interactive Systems. In: Proceedings of HCI International ’09.
San Diego, USA, 826–835.

Engel, J. et al. (2012): Pattern-based Modeling and Development of Interactive In-
formation Systems. In: Frotschnig, A. & Raffaseder, H. (Eds.): Forum Medien-
technik – Next Generation, New Ideas : Beiträge der Tagung 2012 an der Fach-
hochschule St. Pölten. Glückstadt: Verlag Werner Hülsbusch, S. 155–167.

Engel, J. et al. (2014): Evaluation of Model-based User Interface Development Ap-
proaches. In: Human-Computer Interaction, Theories, Methods, and Tools, HCII
2014 (LNCS 8510). S. 295–307.

Fincher, S. et al. (2003): Perspectives on HCI patterns: concepts and tools. In:
CHI’03 Extended Abstracts on Human Factors in Computing Systems. New
York: ACM, S. 1044–1045.

Forbrig, P. & Reichart, D. (2007): Spezifikation von „Multiple User Interfaces“ mit
Dialoggraphen. In: Processdings of INFORMATIK 2007: Informatik trifft Logis-
tik. Beiträge der 37. Jahrestagung der Gesellschaft für Informatik e.V. (GI), Bre-
men. S. 449–453.

Kaelber, C. & Märtin, C. (2011): From Structural Analysis to Scenarios and Patterns
for Knowledge Sharing Applications. In: Human-Computer Interaction, Design
and Development Approaches, HCII 2011 (LNCS 6761). Heidelberg: Springer,
S. 258–267.

Märtin, C. et al. (2010): Using HCI-Patterns for Modeling and Design of Knowledge
Sharing Systems. In: P. Forbrig & H. Günther (Eds.): Perspectives in Business
Informatics Research, BIR 2010 (LNBIP 64). Heidelberg: Springer, S. 1–13.

Märtin, C. et al. (2013): Patterns and Models for Automated User Interface Construc-
tion – In Search of the Missing Links. In: M. Kurosu (Ed.): Human-Computer In-
teraction, Part I, HCII 2013 (LNCS 8004). Heidelberg: Springer, S. 401–410.

Paternò, F. (2001): ConcurTaskTrees: An Engineered Approach to Model-based
Design of Interactive Systems. Pisa: ISTI-C.N.R.

Paternò, F. et al. (2009): Model-based Design of Multi-device Interactive Applica-
tions Based on Web Services. In: Proceedings of the 12th IFIP TC 13 Interna-
tional Conference on Human-Computer Interaction: Part I. Berlin/Heidelberg:
Springer, S. 892–905.

Furnishing HCI Patterns to Support Modeling and Generation of ... 41

Seffah, A. (2010): The evolution of design patterns in HCI: from pattern langauges
to pattern-oriented design. In: Proceedings of the 1st Interational Workshop on
Pattern-Driven Engineering of Interactive Computing Systems (PEICS’10). ACM.
S. 4–9.

van Welie, M. (2014). Patterns in Interaction Design: http://www.welie.com <Sept.
2nd, 2014>.

